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Abstract

Refinement of Bayesian network structures using new data becomes more and
more relevant. Some work has been done there; however, one problem has not been
considered yet - what to do when new data has fewer or more attributes than the
existing model. In both cases data contains important knowledge and every effort
must be made in order to extract it. In this paper, we propose a general merging
algorithm to deal with situations when new data has different set of attributes.
The merging algorithm updates sufficient statistics when new data is received. It
expands the flexibility of Bayesian network structure refinement methods. The new
algorithm is evaluated in extensive experiments, and its applications are discussed
at length.

1 Introduction
Bayesian network (BN) [1] is a directed acyclic graph (DAG) where nodes represent
attributes or variables of a subject of matter, and arcs between the nodes describe the
causal relationship of attributes or variables. It is widely used in the medical, biological
domains, and so on. The use of BN is a logical and natural way to represent the joint
probability distribution over the variables.

A lot have been written on how to construct a BN structure from data and most of
the writing has been focused on learning the structure using batch algorithms [2]. Batch
algorithms go through all of the data and then structure a corresponding BN. This is an
interesting field of study but in many cases the whole data is not available i.e. new data
is expected sometime in the future. It is neither efficient nor in some cases possible
to store all the data met in order to run batch algorithms that would learn the structure



from scratch, when new data is available. To address this kind of problems in structural
learning, algorithms need to be incremental, and use both previous experience and new
data to refine the structure of the network. They must rely on the previous structure to
speed up the refinement process, but not too heavily so that they could make corrections
to the old structure.

One way is to use the structure of the old network as prior probability. Some work
has been done in this line [3]. This however can have the unwanted consequences that
the new network is biased to the old structure. Another approach is to use sufficient
statistics (SUFF ) or combination of these two approaches [4]. There have been some
works in the field of incremental or sequential refinement of network structures. A
good review could be found in [5].

The problems that have not gotten enough attention are when new data has different
set of attributes. It can have partial attributes, it can have some new attributes or both
partial and new attributes. When new data arrives, a network needs to be refined in
order to represent the domain more accurately than before. The most accurate approach
would be to learn the network from scratch but this of course is not always feasible.
The main focus of this paper is on these problems and the solution proposed is to update
the SUFF when receiving new data. The basic idea is to add the new attributes to the
SUFF in the right proportion.

We present the merging algorithm that orients operations to configurations of all
common attributes in old and new SUFF , and does the sampling in a reasonable way.
The new approach is pretty straightforward, and performs well in extensive experi-
ments.

This paper is structured into the following sections. In Section 2, some relevant
works on Bayesian network structural learning and refinement are briefly reviewed.
The merging algorithm on updating sufficient statistics when new data arrives is intro-
duced in Section 3. In Section 4, the new algorithm is studied in a series of experiments.
Finally discussions in Section 5 generally debate on some aspects of applying the new
algorithm. , and we conclude the paper in Section 6.

2 Relevant works
Learning Bayesian network is a very important part of machine learning. A formal
definition of this process could be:

Given a set of data, infer the topology for the causal network that may have
generated them together with the corresponding uncertainty distribution.
[6]

As stated in the definition, two stages of learning process are distinguished: learn-
ing topology (structure) and learning parameters of a network. Although much re-
search has been done in both fields, the results from research on learning structure are
far less satisfying. Since this work is about learning structure, the process of learning
parameters is not discussed thoroughly. One interested in parameter learning should
refer to [7, 8].

2.1 Bayesian Network Structure Learning
Learning Bayesian network structures from data is to infer the topology of variables or
attributes available in the data. In general, the traditional structural learning approaches



follow the batch paradigm. Details about learning Bayesian network structures are
discussed in the book [2].

There are two main approaches for learning Bayesian networks: constraint based
approach and score based approach. The first one constructs a network structure based
on the conditional tests between variables. The representative work is the PC algo-
rithm [9]. The score based approach traverses the DAG space led by data goodness-
of-fit criterion. The criterion is described by some scoring functions that measure the
quality of the network structure given data such as the BDe score [10], the MDL prin-
ciple [11], and so on. Some representatives of this approach are structural learning
algorithms such as the K2 [10], HCMC [12], and so on.

Although both approaches are known to provide pretty good results, they also have
well known drawbacks. Constraint based methods tend to need large data sets, the
reasons for this, as stated in [5], are two. Firstly to get reliable estimates from condi-
tional tests between variables with weak conditional dependency. Secondly when there
is a high number of variables involved. Score based methods explore the space of all
possible DAGs that grows more than exponentially to the number of variables. There-
fore score based methods use heuristics to explore only the part of the DAG-space that
is likely to contain a Bayesian network structure, that is optimal given the data. The
most widely used is hill climbing search that uses traversal operators to obtain net-
works neighbourhood [5] and choose one or more best neighbours as candidates for
the further search.

2.2 Bayesian Network Structure Refinement
Just as it is important to learn a Bayesian network structure that best describes causal
relations between attributes, the problem of efficiently refining a structure upon new
data is getting more and more relevant. This is mainly due to the environment where
Bayesian network models could be used. They constantly provide more and more
data that encodes the desired information. The need to extract the information and
use it to support the model has added to the importance of Bayesian network structure
refinement.

Most of the widely used batch algorithms take data (and some extra information,
if necessary) as an input, and learn a Bayesian network structure. In order to be able
to update the model, new data must join the old data that has been kept so far, and the
batch algorithm needs to start its work from scratch. Obviously this is neither memory
nor time efficient, therefore some better methods need to be invented.

A desired method should be able to iteratively use new data instead of starting
everything from scratch. In other words a desired method should be intelligent enough
to combine new information with its previous experience to update its knowledge. A
response to these requirements is incremental methods. These are Buntine (B) [13],
Friedman and Goldszmidt(FG) [4] algorithms, and so on. Both of them use SUFF of
data that only contains counts of different entries in data instead of data entries. They
only require constant time to update SUFF when new records arrive; the record itself
can be discarded after SUFF is updated.

When the FG and Bun algorithms are designed to be incremental, such popular
batch algorithms like the B, K2 [10] and HCMC [12] algorithms can also be turned
into incremental ones. In [5], J. Roure has much discussion on the transformation.
After combinng SUFF with reduced search space (RSS), J. Roure introduced new
algorithms iK2, iB and iHCMC that are all incremental [5]. In fact they are quite similar
to the original FG and Bun algorithms. J. Roure even proposed special heuristics to



store only SUFF of the best structure candidates, just as in slightly different styles the
FG and Bun algorithms do.

Having a bunch of incremental algorithms, new problems arise. When a model
using Bayesian network is being designed all the attributes of a system must be known
in order to relate them. Unfortunately in the real life it might be useful or even neces-
sary to introduce new attributes when more knowledge about the subject of matter is
gained. There might be also some new data available that only has partial attributes,
but still contains a lot of knowledge about the subject. Neither incremental nor batch
algorithms can cope with that directly. One could suggest that when new attributes
need to be introduced into the model, a new model should be created from data and
it should replace the former one. But in this case, one would drop all the knowledge
already gained so far. Suppose there is a model that is working and has been updated
for years, and the model contains knowledge extracted from millions or even billions
of data entries. It would be extremely inefficient if all of that knowledge would have
to be dropped, and the model be replaced by a new model learned just from a new,
relatively small data set.

A heuristic to incrementally learn Bayesian network structures even when new data
instances have different set of attributes needs to be invented. It would also be nice,
if a desired heuristic could solve the problem generally and in an elegant way, so that
every or at least most learning algorithms could be improved in a similar fashion and
still preserve their original efficiency and quality.

3 New data with different set of attributes
The incremental approaches have two common properties. The first one is that they
all use sufficient statistics, and at iteration they repeat the search path by traversing the
reduced DAG space. The later property is also known as RSS heuristic. While RSS
does not really care about the attributes of data, SUFF is where the main knowledge
is stored. To understand how a problem of new data with different set of attributes can
be solved it is therefore necessary to understand SUFF .

3.1 Sufficient statistics
To store all the data that is constantly arriving in incremental algorithms is not feasible
because of finite memory. On the other hand, not everything in the data is useful for
learning a Bayesian network structure. Actually a data entry alone does not give any
information. It is obvious that the scoring needs to be explored in order to find out what
in the data is necessary for the learning process and what is not, since only a scoring
function deals with the data directly.

The well known BDe scoring function [10] is described in Eq. 1.

P (BS |D) = P (BS)
n∏

i=1

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk! (1)

where BS is a structure of Bayesian network, D is a data set, P (BS) is the prior
probability of a network structure BS , that can be used to express any prior knowledge
of a structure. n is the number of variables, ri is the arity of a variable Xi, qi is
the number of possible parent (Pai) configurations, Nijk is a number of entries in D



where variable Xi is set to its kth value and its parents are instantiated to their jth

configuration and Nij =
∑ri

k=1 Nijk.
Hence only the counts of entries satisfying certain attribute configurations are nec-

essary. Let X denote a set of random variables and x be the value assignments for the
variables in X. Let the vector N̂D

X contain the counts of entries in the data D where
X = x for every possible x. A set N̂D

X is called sufficient statistics of variables X.
Then, given the decomposability of the scoring function, N̂D

Xi,Pai
for all Xi ∈ X and

all possible parent sets for Xi is all the information necessary to learn the Bayesian
network structure for the data D.

|SUFF (BS)| = n×
p∑

i=0

(
n
i

)
× arity(X)i (2)

The memory used for SUFF can be described by its cardinality in Eq. 2, where n
is the number of variables, p the maximum number of parents and arity(X) is the arity
of variable X . It is assumed for simplicity that all the variables have the same arity. As
it can be seen, cardinality of SUFF is more than exponential. When p = n − 1 the
cardinality is extremely large, but, fortunately, in most applications p is rather small
as well as an average arity of a variable. One interested in implementing memory and
time efficient SUFF should consider such data structures like AD-trees introduced
in [14] or an even more optimised dynamic AD-trees discussed in [15].

Having a compact SUFF it is possible to keep the history of all the data entries
seen while using constant amount of data, therefore all the experience of incremental
structure learning algorithms is accumulated there. When new data with different set of
attributes arrives, it can be considered equivalent to a problem where the new or old (or
both) data has missing values. Neither the Minimum Description Length function [11]
nor the BDe scoring function can deal with missing values without special improve-
ments. Experiments showed the BDe scoring function was so sensitive to missing
values in a data set. Even for 5 entries with missing values in a data set containing
20000 items, the resulted BN structure was different from the one obtained when those
5 entries were not removed or reasonable values were specified (or even randomly, if
the number of entries with missing data is relatively small to the size of the data set).
Although incremental algorithms use SUFF instead of data directly, the discrepancy
of counts in the data (which is the reason that scoring functions work incorrect) still
exists since it is transferred to SUFF . In addition, if AD-trees together with most
common value (MCV ) [5] pruning are used for SUFF , the entries with missing val-
ues would eventually be identified as entries satisfying MCV configurations, which in
fact would not be true.

3.2 Merging data with different sets of attributes
Since the same problem holds for both data sets and SUFF of those data sets it would
be nice to find a general way to solve it. The proposal is pretty straightforward. While
merging two data sets (or SUFF ) the missing attribute values should be sampled with
respect to the distribution of the same attribute values in the set they are present. For
the sake of a general representation, the merging algorithm is presented in Fig. 1 in
the form of two data sets. It can be used with SUFF instead of data sets with minor
technical changes.

As it can be seen, the algorithm runs through all common attribute (A1 ∩A2) con-
figurations (value assignments) that are met in both data sets (line 8). It is because only



from the common attributes the missing attribute values can be sampled reasonably.
If the common value configuration (as) is present in both data sets - the one that has
missing attributes and the other that has them present (combinations of lines 11 and
14 as well as 19 and 22) - the algorithm can sample reasonable values for the missing
attributes according to their distribution in the set they are present (lines 16 and 24). In
case some common attribute configurations are in data set with missing attribute values
but not within the data set with those attributes present (lines 12 and 20), it is impossi-
ble to make a reasonable sampling, hence, all the entries satisfying that configuration
are deleted (lines 13 and 21). This choice is made in order to save precision.

Merging Algorithm
Require: D1, D2 data sets
Ensure: a new data set D which is a result of merging D1 with D2

1: A1 ← D1.getAttributes()
2: A2 ← D2.getAttributes()
3: if A1 = A2 then
4: return D ← D1 + D2

5: else
6: D′

1 ← D1.copy()
7: D′

2 ← D2.copy()
8: for all A1 ∩A2 value assignments as in D1 ∪D2 do
9: c1 ← D1.getCount(A1 ∩A2 = as)

10: c2 ← D2.getCount(A1 ∩A2 = as)
11: if A2\A1 6= ∅ and c1 > 0 then
12: if c2 = 0 then
13: D′

1.deleteEntries(A1 ∩A2 = as)
14: else
15: E ← D′

1.selectEntries(A1 ∩A2 = as)
16: E.sampleV alues(A2\A1, D2.entriesDistribution(A2\A1))
17: end if
18: end if
19: if A1\A2 6= ∅ and c2 > 0 then
20: if c1 = 0 then
21: D′

2.deleteEntries(A1 ∩A2 = as)
22: else
23: E ← D′

2.selectEntries(A1 ∩A2 = as)
24: E.sampleV alues(A1\A2, D1.entriesDistribution(A1\A2))
25: end if
26: end if
27: end for
28: return D ← D′

1 + D′
2

29: end if
Figure 1: The pseudo code of merging algorithm

The argument for deleting configuration has two. First, configurations present in
one data set and missing in the other occur because they have a low probability; hence,
their contribution to the general relationships is not strong, and removing them does
not have a big impact. The consequence of deleting entries is that it makes the algo-
rithm more sensitive to the size of data. If the size of data is too small with respect
to the number of attributes, configurations have lower chances to be included since the
number of configurations increases exponentially to the number of attributes. The more
attributes the data set has, the bigger chunks of new data should be accumulated in order
to learn relationships between new and old attributes without losing much knowledge



about their relationships. Secondly, experiments have shown if the values are generated
randomly the bias is introduced. Randomly sampling for missing attribute values with
configurations that are not in the data set with those available attributes was tried. The
bias is small enough to be ignored as long as the number of this kind of configurations
is small. However, the side effects (extra relations are introduced or some of them dis-
appear) become more and more visible when the number of configurations increases.
This results in new relationships that eventually affect a network structure.

Example

A B C A B C E F
1 1 1 1 1 1 1 1
0 1 1 0 1 0 1 0
1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 1
1 1 1 0 1 1 1 1
1 0 0 1 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 1 1 1 1 1
1 0 0 1 0 0 0 1
0 1 0
1 1 1
1 1 0
0 1 0
0 0 1

Table 1: Data sets D1 with 3 attributes and D2 with 5 attributes

This example is provided to demonstrate the algorithm. Suppose there are two data
sets D1 and D2 (Table 1) provided. Let D1 be the original data (it doesn’t matter which
one it is) and then new data arrives, data set D2. The sufficient statistics for D1 can be
expressed as count tables (Table 2) as well as corresponding AD-tree (using zero value
and most common value pruning) in Figure 2. The details how AD-tree is constructed
are not present in this article. One interested should refer to [14]. The algorithm counts
configurations of common attributes from both data sets and the result can be seen in
Table 3. The data for E and F is missing in D1 and it should be added where it is
possible. The rows in D1 where it is not possible to add counts for F and E need to be
deleted. This happens where A, B and C are set to 1 1 0 respectively. But it is possible
to add E and F to D1 in the same proportion, where the configuration of the common
attributes is the same and they are found in D2. The results of this can be seen in Table
4.

4 Experiments
The proposed algorithm is evaluated in extensive experiments. Before experimental
results are presented, it is necessary to notice that the problem can be divided into three
cases as shown in Fig. 3:

• The first case is when new data (or SUFF of data) D2 introduces new attributes



Var. State #
A 0 4

1 11
B 0 8

1 7
C 0 10

1 5

Vars. State #
A,B 1 1 4

1 0 7
0 1 3
0 0 1

A,C 1 1 3
1 0 8
0 1 2
0 0 2

B,C 1 1 4
1 0 3
0 1 1
0 0 7

Vars. State #
1 1 1 3
1 1 0 1
1 0 1 0

A,B, C 1 0 0 7
0 1 1 1
0 1 0 2
0 0 1 1
0 0 0 0

Table 2: Sufficient statistics for D1 represented as count tables

A=*
B=*
C=*
15

B
mcv=0

A
mcv=1

C
mcv=0

A=*
B=1
C=*

7

A=*
B=*
C=1

5

A=0
B=*
C=*

4

C
mcv=1

A=*
B=1
C=0

3

C
mcv=0

A=0
B=*
C=1

2

B
mcv=1

A=0
B=0
C=*

1

C
mcv=1

null

Figure 2: Sufficient statistics for D1 represented as AD-tree



A B C D1 D2 Total E F D2
1 1 1 3 2 5 1 1 2
1 1 0 1 0 1 0
1 0 0 7 4 11 1 0 1

0 1 3
0 1 1 1 1 2 1 1 1
0 1 0 2 1 3 1 0 1
0 0 1 1 2 3 0 0 2

Table 3: Counts of configurations from D1 and D2

A B C E F Total
1 1 1 1 1 5
1 0 0 1 0 4
1 0 0 0 1 7
0 1 1 1 1 2
0 1 0 1 0 3
0 0 1 0 0 3

Table 4: Counts of configurations after updating

(Figure 3a). This could happen, when some new knowledge about a subject is
available and new variables into a model need to be introduced.

• In the second case, new data (or SUFF of data) D2 has only partial attributes
(Figure 3b). Sometimes new data that only has part of model attributes is avail-
able. In spite of that, it still contains useful knowledge about present attributes
and their relationship, that could be used to strengthen the model.

• The combination of the first two cases is the third one. New data (or SUFF
of data) D2 has some new attributes as well as some old attributes of D1 are
missing (Figure 3c).

X1, ,Xk

X1, ,Xk, ,Xn
D1

D2

X1, ,Xk, ,Xn

D1X1, ,Xk

D2

X1, ,Xl, ,Xk

D1

(a)

Xl, ,Xk, ,Xn

D2

(b) (c)(a)

X1, ,Xk

X1, ,Xk, ,Xn
D1

D2

X1, ,Xk, ,Xn

D1X1, ,Xk

D2

X1, ,Xl, ,Xk

D1

(a)

Xl, ,Xk, ,Xn

D2

(b) (c)(b)

X1, ,Xk

X1, ,Xk, ,Xn
D1

D2

X1, ,Xk, ,Xn

D1X1, ,Xk

D2

X1, ,Xl, ,Xk

D1

(a)

Xl, ,Xk, ,Xn

D2

(b) (c)(c)

Figure 3: (a): D2 introduces new attributes; (b): D2 has partial attributes; (c): D2 has
partial attributes as well as introduces some new.

Experiments showed that there was a large difference between the first two cases
and the third case. While in the first two cases all the attributes can be related because
they are present in at least one data set or SUFF , in the third case it is really com-
plicated to relate attributes that are only in D1 with those only in D2. Hence it was



necessary to conduct different experiments for the first two cases and the third case
respectively.

4.1 Cases 1 and 2
The experiments for the first two cases were conducted with three networks Asia (8
nodes) [16], Studfarm (12 nodes) and Boblo (22 nodes) provided by Hugin. The two
data sets containing 5000 entries were generated from the three networks. All the data
sets were checked whether the K2 structure learning algorithm [9] can learn the original
network from them. The measures taken were three: the logarithmic BDe score of the
original network given the merged data set, the score of the network learned using the
K2 algorithm given the merged data set, and the average time used to merge the two
data sets (the experiments were conducted 6 times each and then average was taken).
The experiments were run in this way: at the beginning the first data set is the one
that has all the attributes available and the attributes of the second one are gradually
removed every step until only one or two are left; then, the data sets are switched in the
second stage to be sure that the algorithm can work correctly with different data sets.
The results for all three experiments are shown in Fig. 5, Fig. 6 and Fig. 7 respectively.

Vars removed Orig. Net. Score Result Net. Score Time
0 -22516 -22516 0s
1 -22505 -22505 8s
2 -22529 -22529 7.5s
3 -22532 -22532 7s
4 -22556 -22556 8s
5 -22591 -22591 7.5s
6 -22716 -22716 8s
7 -22680 -22680 8.5s

Table 5: Results of merging two 5000 entries data sets generated from network Asia
with 8 nodes

Vars removed Orig. Net. Score Result Net. Score Time
0 -3695 -3695 1s
1 -3604 -3604 10s
2 -3675 -3675 11s
3 -3683 -3683 8.5s
4 -3720 -3720 8s
5 -3720 -3720 8.5s
6 -3732 -3732 8.5s
7 -3710 -3710 9s
8 -3692 -3692 8.5s
9 -3589 -3589 8.5s
10 -3728 -3728 8.5s
11 -3710 -3710 8.5s

Table 6: Results of merging two 5000 entries data sets generated from network Stud-
farm with 12 nodes



Vars removed Orig. Net. Score Result Net. Score Time
0 -47020 -47020 1s
2 -45607 -45607 25s
4 -45940 -45940 24s
6 -46159 -46159 33s
8 -46159 -46159 25s
10 -46721 -46722 25s
12 -46907 -46908 20s
14 -47029 -47029 17s
16 -47105.3 -47105.8 19s
18 -47136 -47143 20s
20 -47036 -47036 19s

Table 7: Results of merging two 5000 entries data sets generated from network Boblo
with 22 nodes

Experimental results show that the merging algorithm works well with data gener-
ated from the Asia and Studfarm networks. In Fig. 5 and Fig. 6, the score of networks
learned from the merged data sets is the same as that of the original networks in any sit-
uation. It indicates all resulted networks best fit the data. Furthermore, according to the
resulted structures (not shown here), all of them learned from the merged data sets by
the K2 algorithm are identical to the original network structure. Hence, the algorithm
can be considered reliable. The average time used by the algorithm is reasonable and
scales slower than the time spent for learning when the number of attributes increases.

On the other hand, results are not so nice with the data generated from the Boblo
network. Fig. 7 shows the resulted networks fit data well, even better than the orig-
inal network, and the algorithm uses reasonable time. However, half of the network
structures learned from the merged data differs from the original one.

It indicates there is some information lost or some new relationships introduced that
change the data distribution. A reasonable explanation could be that there is too little
data. Knowing that the number of configurations of attributes grows exponentially to
the number of attributes it is pretty naive to expect the same amount of data is sufficient
for data sets with 8, 12 and 22 attributes. Hence a decision to conduct experiments with
10000 entries data sets generated from the Boblo network was made.

Experimental results in Fig. 8 show that the idea to increase the amount of data is
good. All the structures learned from the merged data by the K2 algorithm are identical
to the original one, and time does not increase dramatically. Hence it is necessary to
conclude that one using the merging algorithm should have data sets with a reasonable
size (with respect to the number of attributes).

The experimental results conclude the merging algorithm is reliable, effective and
efficient (it takes similar time in spite of the number of attributes missing) when at least
one data set has all the attributes (cases 1 and 2).

4.2 Case 3
Different experiments need to be conducted for case 3 when a data set has some at-
tributes that are not in the other one. In this situation attributes that are only in the first
data set cannot be directly related with attributes only in the second data set. Never-
theless it is expected, that it should be possible to obtain the relationship between them



Vars removed Orig. Net. Score Result Net. Score Time
0 -90863 -90863 4s
2 -90508 -90508 50s
4 -91321 -91321 49s
6 -91863 -91863 60s
8 -91863 -91863 50s
10 -92822 -92822 41s
12 -92943 -92943 30s
14 -93220 -93220 27s
16 -93270 -93270 27s
18 -93561 -93561 33s
20 -93577 -93577 30s

Table 8: Results of merging two 10000 entries data sets generated from network Boblo
with 22 nodes

through the common attributes.

A

T

E

E3

E2

E1

L

Figure 4: The original network in case 3

It is supposed that it should be safe to have missing attributes if they are condition-
ally independent. To check how conditional dependency properties manage to subsist
when different attributes are not available in two data sets an experiment was made.
A Markov blanket of node T was taken from the Asia network, and then three extra
nodes E1, E2 and E3 are added in all three possible different positions, so they do not
get involved in T ’s Markov blanket. The experimental network is shown in Fig. 4. Just
as the experiments were done in the first two cases, different attributes were removed
from the two original data sets containing 5000 entries each; then, they were merged
and a network was built using the K2 learning algorithm.

Since there are four nodes {A,E, L, T} in T ’s Markov blanket(here it is supposed
to include T ) and three extra nodes {E1, E2, E3}, 21 different cases have been con-
ducted as well as 21 network structures best fitting them have been obtained. There are
3 groups in 21 cases that need to be commented:

Group 1 (12 cases). One extra attribute ({E1, E2, E3}) is removed from the first
data set and one of T ’s Markov blanket nodes ({A,E, L, T}) from the second data



set. As expected this does not change T ’s Markov blanket conditional dependency
properties with some exceptions in two cases shown in Fig. 5 and Fig. 6 respectively.
Other 10 cases could output the same structure as the original one.

The results of the two exception cases could be explained in this way. In both of
them, extra attributes and T ’s Markov blanket attributes that have direct relations were
removed from different data sets, which causes the original relation to be lost. Hence
the arcs between E1 and T (in Fig. 5(b)) and between E2 and E (in Fig 6(b)) are in-
troduced when intermediate variables are removed. In Fig. 5(c), the arc between nodes
E1 and T is still kept since they have a strong relation that is encoded in the second
data set (D2) and is not compromised in the merged data set (D1 ∪ D2). Hence the
resulted network in Fig. 5(c) does not show nodes E1 and T are independent given
node A. Similarly, in Fig. 6(c), the introduced arc between T and L preserves the
relation between E2 and E. The result follows the logical combination of the two net-
work structures that tries to preserve dependent and conditional independent relations
encoded in these two networks.

A

T

E

E3

E2

L

(a) Network learned from
D1

E1

T

E

E3

E2

L

(b) Network learned from
D2

E1

T

E

E3

E2A

L

(c) Network learned from D1 ∪D2

Figure 5: The case when E1 and A are removed.
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T

E
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Figure 6: The case when E2 and L are removed.



Group 2 (3 cases). Both attributes removed are extra attributes {E1, E2, E3}. Since
they do not have any direct relation, as expected, all three resulted networks are identi-
cal to the original one.

Group 3 (6 cases). Both attributes removed are from T ’s Markov blanket {A,E, L, T},
therefore some missampling happens. Nevertheless in most of the cases the resulted
networks are identical to the original one. The two exception cases are shown in Figs. 7
and 8 respectively. The case in Fig. 7 can be explained in the same way as the second
exception case in Fig. 6. However, the case in Fig. 8 is somewhat different. Some extra
arcs are again introduced, but the arc from E2 to E3 does not follow the logical combi-
nation of structures of the two compounding data sets. There is no obvious reason for
this.
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Figure 7: The case when L and T are removed
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5 Discussion
When attributes are added to a network the effects on the existing nodes can be very
hard to judge. The effects can range from no impact on existing structure, this means
the new attributes are only introduced as parents or children of existing attributes. The
effects can also be very dramatic they might really affect the relationships between
existing attributes. The algorithm deals with both of these case, in the former case
were new data is not affecting the existing data then the configuration of common
attributes will be the same for majority of the data, therefore not many configurations
will be deleted from the existing data. The size of the data set which is being added
together with its attributes is also very important factor. The main danger of adding too
little data is that it would cause the algorithm to delete a lot of old entries that might be
relevant for the model.

On the other hand when the new data has different distribution the configurations
of the common attributes might also be different, therefore many inconsistent old con-
figurations are removed from the existing data. This introduces some extra flexibility
to the incremental learning, because this way model can be updated even when the
world changes dramatically. In this case the algorithm is also sensitive to the size of
the new data with respect to the number of attributes. Number of entries must be large
enough to represent the new distribution, but if it gets too large, the noise in the data
can result that some frequent entries from the old data that are not relevant anymore
would continue existing. Therefore one applying proposed algorithm in the model of
some agile system must make extensive experiments to find out the optimal size of new
data chunks in order to keep model always up-to-date.

Although algorithm does not have problems with timing – it take much less time
than learning structure. Still one might consider some optimisations. Suppose new
data with partial attributes arrive. It is not necessary to run through the configurations
of all the common attributes. Since the structure of a network is known, only configura-
tions of attributes in Markov blankets of missing attributes need to be considered since
Markov blanket of a node contains all the information needed to predict the behaviour
of a node. This could be reasonable optimisation when the model has a lot of attributes
and new information with a few of them missing arrives, because the less attributes
need to be considered, the less configurations need to be checked.

Another problem considers two data sets that both have some unique attributes in
every case. In order to specify, when exactly it is possible to merge them in such a
way that the underlying attribute distribution is preserved, more extensive experiments
need to be done. The thing that one can be sure of is in some situations it is definitely
impossible, because sometimes the relations between variables are lost as it can be seen
from the experiments when the resulting network structure is different even though it
is a logical combination of structure learnt from merged data sets.

6 Conclusions
The problem of refining network structure on the arrival of new data can be divided in
four categories.

1. New data has full attributes as the original data

2. New data has partial attributes of the original data



3. New data has full attributes of the original data and some new attributes

4. New data has both partial attributes of the original data and some new attributes

In this paper all the categories were investigated. The solution proposed consists of
updating SUFF and then running some learning algorithm to refine the network, in
this paper all the experiments were conducted using K2 algorithm. The results of the
experiments show that the correct network have been constructed in all cases when
experimenting with data sets in category 1, 2 and 3. However experiments with data
sets in category 4 did not give consistent results. In most cases the results were correct,
but in few cases the results differ slightly from expected network because sometimes
it is impossible to extract the relation between two attributes when they are not present
together in any data.

To conclude, the new merging algorithm provided in this paper proved to work
sufficiently well in respect to both: the quality and time complexity. The usage of this
new proposal is to introduce a new degree of flexibility into Bayesian network structure
refinement methods, since new data with less or more attributes can also be used.
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