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Abstract We develop new graphical representations for the problem of sequential deci-
sion making in partially observable multiagent environments, as formalized by interactive
partially observable Markov decision processes (I-POMDPs). The graphical models called
interactive influence diagrams (I-IDs) and their dynamic counterparts, interactive dynamic
influence diagrams (I-DIDs), seek to explicitly model the structure that is often present in
real-world problems by decomposing the situation into chance and decision variables, and
the dependencies between the variables. I-DIDs generalize DIDs, which may be viewed as
graphical representations of POMDPs, to multiagent settings in the same way that I-POMDPs
generalize POMDPs. I-DIDs may be used to compute the policy of an agent given its belief
as the agent acts and observes in a setting that is populated by other interacting agents. Using
several examples, we show how I-IDs and I-DIDs may be applied and demonstrate their
usefulness. We also show how the models may be solved using the standard algorithms that
are applicable to DIDs. Solving I-DIDs exactly involves knowing the solutions of possible
models of the other agents. The space of models grows exponentially with the number of
time steps. We present a method of solving I-DIDs approximately by limiting the number
of other agents’ candidate models at each time step to a constant. We do this by clustering
models that are likely to be behaviorally equivalent and selecting a representative set from
the clusters. We discuss the error bound of the approximation technique and demonstrate its
empirical performance.
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1 Introduction

Interactive partially observable Markov decision processes (I-POMDP) [14] provide a frame-
work for sequential decision making in partially observable multiagent environments. They
generalize POMDPs [19, 34] to multiagent settings by including other agents’ computable
models in the state space along with the states of the physical environment. The models
encompass all information influencing the agents’ behaviors, including their preferences,
capabilities, and beliefs, and are thus analogous to types in Bayesian games as first envi-
sioned by Harsanyi [17]. I-POMDPs adopt a subjective approach to understanding strategic
behavior, rooted in a decision-theoretic framework that takes a decision-maker’s perspective
in the interaction.

Enumerative representations of models often obscure important structure that is typically
present in many realistic application settings. Graphical models, such as influence diagrams
(ID) [33, 36] offer a qualitative language that decomposes the state into chance (random)
variables and dependencies between the variables. Algorithms for solving the models exploit
the conditional independence between variables, and often consume less time and space in
solving the problem compared to those that operate on traditional enumerative representa-
tions. As a case in point, factored representations of POMDPs (and MDPs) that utilize IDs
often facilitate fast solutions that exploit the structure (see [4, 16] for examples). Graphical
models also allow a more explicit qualitative description of the decision-making situation as
compared to enumerative forms.

In order to provide a graphical representation for I-POMDPs and make the structure
explicit, Polich and Gmytrasiewicz [28] introduced a novel graphical model, called interactive
dynamic influence diagram (I-DID). I-DIDs may be viewed as graphical representations
of I-POMDPs. They generalize DIDs (dynamic IDs), which are graphical counterparts of
POMDPs, to multiagent settings in the same way that I-POMDPs generalize POMDPs.

In this paper, we significantly improve on the previous preliminary representation of
I-DIDs by first introducing static interactive influence diagrams (I-ID), relating them to
another multiagent graphical model, network of influence diagrams (NID) [13], and then
extending I-IDs to their dynamic counterparts, interactive dynamic influence diagrams
(I-DIDs). Analogous to DIDs, I-DIDs compactly represent the decision problem by map-
ping various variables into chance, decision and utility nodes, and denoting the dependencies
between variables using directed arcs between the corresponding nodes. However, matters are
more complex when we consider multiagent interactions that are extended over time, where
predictions about others’ future actions must be made using models that change as the agents
act and observe. I-DIDs address this gap by allowing the representation of other agents’
models as the values of a special model node. Both other agents’ models and the original
agent’s beliefs over these models are updated over time using special-purpose implementa-
tions. Specifically, the update of the agent’s belief over the models of others as the agents
act and receive observations is denoted using a special link called the model update link that
connects the model nodes between time steps.

To facilitate understanding, we explicate the semantics of the model node and the model
update link by showing how they can be implemented using the traditional dependency links
between the chance nodes that constitute the model nodes. The net result is a representation
of I-DID that is transparent and semantically clear in comparison to [28], and capable of
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Fig. 1 The relationship between the four representations along two dimensions. The vertical dimension
(dashed arrows) specifies the generalization from the single agent to the multiagent setting, while the horizontal
dimension (solid arrows) is the mapping from the enumerative to the graphical representation

being implemented using the standard algorithms for solving DIDs. We show how I-DIDs
may be used to model an agent’s uncertainty over others’ models that may themselves be
I-DIDs leading to recursive modeling. Solution to the I-DID is a policy that prescribes what
the agent should do over time, given its beliefs over the physical state and others’ models.
Analogous to DIDs, I-DIDs may be used to compute the policy of an agent online—given
an initial belief of the agent—as the agent acts and observes in a setting that is populated by
other interacting agents. We also explain how elements of the I-DID map to the enumerative
representation of I-POMDP. Additionally, we illustrate their computational advantages in
domains where structure can be exploited.

In Fig. 1, we summarize the relationship along two dimensions between the different
formalisms that we mention in this paper. Specifically, I-DIDs generalize DIDs to multiagent
settings analogously to the way by which I-POMDPs generalize POMDPs. Additionally,
I-DIDs provide a graphical counterpart to the enumerative representation of I-POMDPs
similar to how DIDs are graphical counterparts of POMDPs.

As we may expect, I-DIDs acutely suffer from both the curses of dimensionality and
history [27]. This is because the state space in I-DIDs includes the models of other agents
in addition to the traditional physical states. As the agents act, observe, and update beliefs,
I-DIDs must track the evolution of the models over time. Often, the number of candidate
models grows exponentially over time. Consequently, I-DIDs not only suffer from the curse
of history that afflicts the modeling agent, but also from that exhibited by the modeled agents.
This is further complicated by the nested nature of the state space.

In this article, we also present a method of reducing the dimensionality of the interactive
state space and mitigate the impact of the curse of history that afflicts the modeled agents.
Our method limits and holds constant the number of models, 0 < K � M , where M is the
possibly large number of candidate models, of the other agents included in the state space.

Using the insight that beliefs that are spatially close are likely to be behaviorally equivalent
[30], our approach is to cluster the models of the other agents and select representative
models from each cluster. In this regard, we utilize the popular k-means clustering method
[22], which gives an iterative way to generate the clusters. Intuitively, the clusters contain
models that are likely to be behaviorally equivalent and hence may be replaced by a subset
of representative models without a significant loss in the optimality of the decision maker.
We select K representative models from the clusters and update them over time.

For the approximation technique, we theoretically bound the worst case error introduced
by the approach in the policy of the other agent for two-agent settings and empirically measure
its impact on the quality of the policies pursued by the original agent. Our empirical results
on two application scenarios—the multiagent tiger and machine maintenance problems—
demonstrate the computational savings obtained in solving the I-DIDs and the favorable
performances of the approach.

The remainder of this paper is structured as follows. In Sect. 2, we compare and analyze
the related work. In Sect. 3, we briefly review the framework of I-POMDPs and influence
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diagrams that underlie our work. In Sect. 4, we present the new models of I-IDs and I-DIDs
in detail and illustrate them using example applications. In Sect. 5, we present the exact algo-
rithm for solving I-DIDs and discuss example solutions of the illustrative problems. We also
demonstrate the computational advantage that I-DIDs offer over the enumerative representa-
tions of I-POMDPs. In Sect. 6, we formally propose an approximation technique and discuss
the details of its implementation. Furthermore, in Sect. 7, we discuss its computational com-
plexity and provide theoretical error bounds. We then provide, in Sect. 8, experimental results
that demonstrate the performance of our approximation technique comparing it with exact
solutions with respect to the solution quality and run times. Sect. 9 concludes this paper with
a discussion and future lines of work.

2 Related work

Suryadi and Gmytrasiewicz [35] produced an early piece of related work, in which they
proposed modeling other agents using IDs. Though IDs (and not DIDs) were used to model
other agents, the approach proposed ways to modify the IDs to better reflect the observed
behavior. However, unlike I-DIDs, other agents did not model the original agent and the
distribution over the models was not updated based on the actions and observations.

I-DIDs contribute to a growing line of work on multiagent decision making that includes
multiagent influence diagrams (MAID) [20], and more recently, networks of influence dia-
grams (NID) [13]. These formalisms seek to explicitly model the structure that is often present
in real-world problems by decomposing the situation into chance and decision variables, and
the dependencies between the variables. MAIDs provide an alternative to normal and exten-
sive game forms using a graphical formalism to represent games of imperfect information
with a decision node for each agent’s actions and chance nodes capturing the agent’s private
information. MAIDs objectively analyze the game, efficiently computing the Nash equi-
librium profile by exploiting the independence structure. NIDs extend MAIDs to include
agents’ uncertainty over the game being played and over models of the other agents. Each
model is a MAID and the network of MAIDs is collapsed, bottom up, into a single MAID for
computing the equilibrium of the game keeping in mind the different models of each agent.

Graphical formalisms such as MAIDs and NIDs open up a promising area of research
that aims to represent multiagent interactions more transparently. However, MAIDs provide
an analysis of the game from an external viewpoint and the applicability of both is limited
to static single play games. The interactions we consider are extended over time, where
predictions about others’ future actions must be made using models that change as the agents
act and observe. I-DIDs allow the explicit representation of other agents’ models as the
values of a special model node. Other agents’ models and the original agent’s beliefs over
these models are then updated over time.

As we seek a formalism that facilitates planning and problem solving at an agent’s own
individual level, we extended IDs to the multiagent setting, rather than utilize MAIDs. This
is because MAIDs represent multiagent games objectively and facilitate their analysis from
an external perspective. They adopt Nash equilibrium as a solution concept. However, equi-
librium is not unique—there could be many joint solutions in equilibrium with no clear way
for an agent to choose between them—and incomplete—the prescribed policy is not opti-
mal when the policy followed by the other agent is not part of the equilibrium. Specifically,
MAIDs do not allow us to define a distribution over non-equilibrium behaviors of other
agents. In comparison, I-DIDs provide a way to exploit predicted non-equilibrium behavior.
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Thus, MAIDs are not amenable to modeling decision making in multiagent settings from an
individual agent’s perspective.

In prior work [28], Polich and Gmytrasiewicz introduced I-DIDs as the graphical represen-
tations of I-POMDPs. In this article, we significantly improve on their previous preliminary
representation of I-DID by using the insight that the static I-ID is a type of NID. Furthermore,
we clearly explicate the semantics of the new constructs such as the model node and model
update link by showing how they can be implemented using the traditional chance nodes and
dependency links between the chance nodes. Consequently, I-IDs and I-DIDs may be solved
using the standard techniques useful in solving IDs and DIDs.

In the context of I-POMDPs, previous solution techniques have focused on their enume-
rative forms. One such approximation technique [8, 9] reduces the model space complexity
by sampling models considered likely by the agent. The models are then propagated over
time using a particle filtering technique generalized to multiple agents, called the interac-
tive particle filter. Though applicable in I-DIDs, because the technique does not mitigate the
curse of history, it does not provide a way to reduce the exponential growth in the models
over time while expanding the I-IDs. As it approximates the belief revision, it finds applica-
tion only while solving the I-DIDs. However, exponential numbers of models are generated
while expanding the I-ID over multiple time steps; thus the technique is less effective in
approximating I-DIDs. In addition, because we prune models that are likely to be behavio-
rally equivalent, our approach results in solutions that are likely to be of similar or better
quality given some number of models.

Other principled efforts that generalize decision theory to multiagent systems include
Markov games [21], multiagent MDP [3], and decentralized POMDP [24, 32]. All of these
assume that the solution, often the equilibrium, is computed centrally and distributed to the
agents. Their applicability is limited to fully cooperative settings (teams), in contrast, I-DIDs
and I-POMDPs may be used in non-cooperative situations as well.

3 Background

Our work builds on the framework of finitely nested I-POMDPs [14] and generalizes the
well-known graphical formalisms of influence diagrams (ID) [18] to multiagent settings.
In this section, we briefly review the I-POMDP framework which provides the mathemati-
cal foundation for the new graphical models. We then provide a selective overview of IDs
referring the reader to [31] for a more introductory description.

3.1 Finitely nested interactive POMDPs

Interactive POMDPs generalize POMDPs to multiagent settings by including other agents’
models as part of the state space. Models of other agents include their private information
such as beliefs, capabilities, and preferences, and are thus analogous to types in Bayesian
games [17]. As agents may have beliefs about the models of others, the augmented state
space, called the interactive state space, is strategically nested—it contains beliefs about
other agents’ models and their beliefs about others. For the simplicity of presentation let us
consider two agents, i and j , which are interacting in a common environment:

Definition 1 (I-POMDPi,l ) A finitely nested I-POMDP of agent i with a strategy level l is

I-POMDPi,l = 〈ISi,l , A, Ti ,�i , Oi , Ri 〉
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where:

• ISi,l is a set of interactive states defined as, ISi,l = S×M j,l−1, where M j,l−1 = {� j,l−1∪
SM j }, for l ≥ 1, and ISi,0 = S, where S is the set of states of the physical environment.
� j,l−1 is the set of computable intentional models of agent j . The remaining set of
models, SM j , is the set of subintentional models of j ;

• A = Ai × A j , is the set of joint actions of all agents in the environment;
• Ti is a transition function, Ti : S × A × S → [0, 1]. It reflects the possibly uncertain

effects of the joint actions on the physical states of the environment;
• �i is the set of observations of agent i ;
• Oi is an observation function, Oi : S × A × �i → [0, 1]. It describes how likely it is for

agent i to receive the observations given the physical state and joint actions;
• Ri is a reward function, Ri : I Si ×A → R. It describes agent i’s preferences over its inter-

active states and joint actions, though usually only the physical states and actions matter.

Intentional models ascribe to the other agent beliefs, preferences and rationality in action
selection [7] and are analogous to types as used in game theory [17]. Each intentional model,
θ j,l−1 = 〈b j,l−1, θ̂ j 〉, where b j,l−1 is agent j’s belief at level l − 1, and the frame, θ̂ j = 〈A,
Tj ,� j , O j , R j , OC j 〉. Here, j is assumed Bayes rational and OC j is j’s optimality criterion.

A subintentional model is a triple, sm j = 〈h j , O j , f j 〉, where f j : Hj → �(A j ) is agent
j’s function, assumed computable, which maps possible histories of j’s observations to
distributions over its actions. h j is an element of Hj and O j gives the probability with which
j receives its input. Simple examples of subintentional models include a no-information
model [15] and the fictitious play model [11], which is history dependent. Such models
would be extended at each time step to incorporate the revised history. Another example of
a subintentional model is a finite state automaton.

Notice that because the intentional models include the beliefs as well, the state space is
naturally nested. We give a recursive bottom-up construction of the interactive state space
below.

ISi,0 = S, � j,0 = {〈b j,0, θ̂ j 〉 | b j,0 ∈ �(IS j,0)}
ISi,1 = S × {� j,0 ∪ SM j }, � j,1 = {〈b j,1, θ̂ j 〉 | b j,1 ∈ �(IS j,1)}
...

...

ISi,l = S × {� j,l−1 ∪ SM j }, � j,l = {〈b j,l , θ̂ j 〉 | b j,l ∈ �(IS j,l)}

Here, � j,0 is the set of POMDPs,1 and the associated θ̂ j represents the parameters of the
POMDP. Similar formulations of nested state spaces have appeared in the game-theoretic
literature (see, for example, [1, 2, 23]).

Solution to a finitely nested I-POMDP (hereafter, referred to as I-POMDP for simplicity) is
the agent i’s policy which is a mapping of its beliefs on the interactive states to a distribution
over its actions, �(I Si ) → �(Ai ). Analogous to POMDPs, the two steps, namely belief
update and policy computation, are used to solve an I-POMDP.

3.1.1 I-POMDP belief update

Analogous to POMDPs, an agent within the I-POMDP framework updates its belief as it
acts and observes. However, there are two differences that complicate the belief update in

1 Other agent’s actions are folded in as noise into the T , O and R functions.
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multiagent settings when compared to single agent ones. First, since the state of the physical
environment depends on the joint actions of both agents, i’s prediction of how the physical
state changes has to be made based on its prediction of j’s actions obtained from the models.
Second, changes in j’s models have to be included in i’s belief update. Specifically, if j is
intentional then an update of j’s beliefs due to its action and observation has to be included.
In other words, i has to update its belief based on its prediction of what j would observe and
how j would update its belief. If j’s model is subintentional, then j’s probable observations
are appended to the observation history contained in the model. Formally, we have:
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∑
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where β is the normalizing constant, δK is the Kronecker delta and is 1 if its argument is
0 otherwise it is 0, Pr(at

j |θ t
j,l−1) is the uniform distribution over actions that are Bayes

rational for the agent described by the model, θ t
j,l−1, and SE(·) is an abbreviation for the

belief update. If j’s models are level 0 POMDPs, then SE(·) represents the standard POMDP
belief update, otherwise it represents the update described above. The belief update equation
for the case where j’s models are subintentional is given in [14].

As we mentioned before, the belief update as formalized by Eq. 1 updates not only
agent i’s belief over the physical states but also its belief on j’s models. Agent i’s updated
distribution on the physical states is given by the probability of transitioning to the new
state, Ti (st , at

i , at
j , st+1), and it is corrected using the likelihood of the observation from the

state, Oi (st+1, at
i , at

j , ot+1
i ). However, because the transition and observation depends on the

actions of the other agent, the probability of its actions must be predicted. The distribution
over j’s actions is given by the term, Pr(at

j |θ t
j,l−1). As the other agent acts and observes as

well, it’s belief must be updated, which is represented by SE(·). Agent i’s belief over j’s
updated belief depends on the probability with which j acts and makes its observations given
by the factor, O j (st+1, at

i , at
j , ot+1

j ).
If agent j is also modeled as an I-POMDP, then i’s belief update invokes j’s belief update

(via the term SE
θ̂ t+1

j
(bt

j,l−1, at
j , ot+1

j )), which in turn could invoke i’s belief update and so

on. This recursion in belief nesting bottoms out at the 0th level. At this level, the belief update
of the agent reduces to a POMDP belief update.

3.1.2 Policy computation

Each belief state of agent i in an I-POMDP has an associated value reflecting the maximum
payoff the agent can expect in this belief state for the case of a finite horizon, n:

U n(〈bi,l , θ̂i 〉) = max
ai ∈Ai

{ ∑

is∈I Si,l

E Ri (is, ai )bi,l(is) + γ
∑

oi ∈�i

Pr(oi |ai , bi,l)

× U n−1(〈SEθ̂i
(bi,l , ai , oi ), θ̂i 〉)

}
(2)

where, E Ri (is, ai ) = ∑
a j

Ri (is, ai , a j )Pr(a j |m j,l−1) (since is = (s, m j,l−1)). Eq. 2 is a
basis for value iteration in I-POMDPs.
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St

Ot
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St+1

Ot+1

At+1

R

Fig. 2 A two time-slice dynamic ID representing the decision-making problem of an agent. The oval nodes
representing the state (S) and the observation (�) reflected in the observation function, O , are the chance
nodes. The rectangle is the decision node (A) and the diamond is the reward function (R). Influences (links)
connect nodes within the same time slice as well as nodes across time slices

For the case of a finite horizon with discount factor γ , agent i’s optimal action, a∗
i , is an

element of the set of optimal actions for the belief state, O PT (θi ), defined in Eq. 3. Thus, the
finite horizon policy is a mapping from the agent’s belief state to the set of optimal actions,
indexed by the horizon.

O PT (〈bi,l , θ̂i 〉) = argmax
ai ∈Ai

{ ∑

is∈I Si,l

E Ri (is, ai )bi,l(is) + γ
∑

oi ∈�i

Pr(oi |ai , bi,l)

× U n(〈SEθ̂i
(bi,l , ai , oi ), θ̂i 〉)

}
(3)

3.2 Influence diagrams

A well-known graphical formalism for describing and solving decision-making situations is
the influence diagram (ID) [18, 33, 36]. Graphical models, such as IDs, offer a formalism
that decomposes the state into chance (random) variables and dependencies between the
variables, decision nodes for modeling the action choices, and utility nodes for represen-
ting the agent’s preferences. As we mentioned previously, graphical models are an explicit
qualitative description of the decision-making situation. We observe that an ID augments a
Bayesian network [26] with decision and utility nodes.

In an ID, the traditional |S|2-size transition matrices are decomposed into tables of smaller
sizes, each of which models the local effect of an action on some variables. IDs also find
another purpose: they may be used to deliberate the optimal action of an agent online given
its initial belief as it acts and observes. On solving an ID unrolled over as many time slices
as the horizon, called a dynamic ID and shown in Fig. 2, we obtain the value of performing
each action in the decision node, with the best action being the one with the largest value.

Dynamic IDs are structured representations of POMDPs [31]. The values of the decision
node, At , constitute the set of actions, A, in a POMDP. The values of the chance node,
St ,2 and the observation node, Ot , are the sets of states and observations, respectively, in
a POMDP. The conditional probability distribution (CPD), Pr(St+1|St , At ), of the chance
node, St+1, is the transition function, T in a POMDP. The CPD, Pr(Ot+1|St+1, At ), of the
chance node, Ot+1, is the observation function, O , and the utility table of the value node, R,
is the reward function, R, in a POMDP.

Dynamic IDs are suitable for describing single agent decision-making situations or mul-
tiagent problems where the other agents are modeled as automatons whose actions are guided
by a fixed and known probability distribution.

2 Note that S could be factored into chance nodes and dependency links between them.
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4 Graphical models for I-POMDPs

As we mentioned previously, naive extensions of IDs to settings populated by multiple agents
are possible by treating other agents as automatons, represented using chance nodes. However,
this approach assumes that the agents’ actions are controlled using a probability distribution
that does not change over time. We introduce graphical formalisms that adopt a more sophis-
ticated approach by generalizing IDs to make them applicable to settings shared with other
agents who may act and observe, and update their beliefs.

4.1 Interactive influence diagrams (I-IDs)

We introduce interactive influence diagrams (I-ID) that generalize IDs to multiagent settings
in this section. In addition to the usual chance, decision, and utility nodes, I-IDs include a new
type of node called the model node. We show a general level l I-ID in Fig. 3, where the model
node, M j,l−1, is denoted using a hexagon. In addition to the model node, I-IDs differ from IDs
by having a dashed link (called the “policy link” in prior work [28]) between the model node
and a chance node, A j , that represents the distribution over the other agent’s actions given
its model. In the absence of other agents, the model node and the chance node, A j , vanish
and I-IDs collapse into traditional IDs. For more than two agents, we add a model node and a
chance node representing the distribution over an agent’s action linked together using a policy
link, for each other agent. The new model nodes are conditioned on the physical state and
possibly model nodes of other agents’ while the chance nodes are linked to the utility node.

The model node contains as its values the alternative computational models ascribed by i
to the other agent from the set, � j,l−1 ∪SM j , where � j,l−1 and SM j were defined previously
in Sect. 3.1. A model in the model node may itself be an I-ID, ID or a probability distribution
over actions, and the recursion terminates when a model is an ID or subintentional. Because
the model node contains the alternative models of the other agent as its values, its representa-
tion is not trivial. In particular, some of the models within the node are I-IDs that when solved
generate the agent’s optimal action(s) in their decision nodes. Each decision node is mapped to
a corresponding chance node, say A1

j , in the following way: if OPT is the set of optimal actions

obtained by solving the I-ID (or ID), then Pr(a j ∈ A1
j ) = 1

|O PT | if a j ∈ OPT , 0 otherwise.
Borrowing insights from previous work [13], we observe that the model node and the

dashed policy link that connects it to the chance node, A j , could be represented as shown
in Fig. 4a. The decision node of each level l − 1 I-ID is mapped to a chance node, as
we mentioned previously, so that the actions with the largest value in the decision node are
assigned uniform probabilities in the chance node while the rest are assigned zero probability.

Fig. 3 A generic level l I-ID for
agent i situated with one other
agent j . The hexagon is the
model node (M j,l−1) and the
dashed arrow is the policy link.
Members of the model node
could be I-IDs themselves or IDs
(m1

j,l−1, m2
j,l−1; diagrams not

shown here for simplicity)
representing intentional models

S

Oi

A i

R i

Mj.l-1

A j
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S

Oi

Ai

Ri

Aj
2Aj

1

Mod[Mj]

Aj

Aj
2

Aj
1

Mod[Mj]

AjS

mj,l-1
1

(a) (b)

Mj,l-1

mj,l-1
2

Fig. 4 (a) Representing the model node and policy link using chance nodes and dependencies between them.
The decision nodes of the lower-level I-IDs or IDs (m1

j,l−1, m2
j,l−1) are mapped to the corresponding chance

nodes (A1
j , A2

j ), which is indicated by the dotted arrows. Depending on the value of the node, Mod[M j ], the
distribution of each of the chance nodes is assigned to the node A j in its CPD. (b) In order to solve the I-ID,
we obtain a flat ID by replacing the model node and the policy link in the I-ID of Fig. 3 with the chance
nodes and the relationships between them as shown in (a). Distributions for the chance nodes, A1

j and A2
j , are

obtained by solving the models, m1
j,l−1 and m2

j,l−1, respectively

The different chance nodes (A1
j , A2

j ), one for each model, and additionally, the chance node
labeled Mod[M j ] form the parents of the chance node, A j . As each action node is associated
with a model, there are as many action nodes in M j,l−1 as the number of models in the model
node. The CPD of the chance node, A j , is a multiplexer that assumes the distribution of each
of the action nodes (A1

j , A2
j ) depending on the value of Mod[M j ]. The values of Mod[M j ]

denote the different models of j . In other words, when Mod[M j ] has the value m1
j,l−1, the

chance node A j has the distribution over its values that the node A1
j has, and A j assumes

the distribution of A2
j when Mod[M j ] has the value m2

j,l−1. The distribution over the node,
Mod[M j ], is the agent i’s top-level belief over the level l − 1 models of j given a physical
state. Notice that Fig. 4a also clarifies the semantics of the policy link, and shows how it can
be represented using the traditional dependency links.

In Fig. 4b, we show the flat ID when the model node in Fig. 3 is replaced by the chance
nodes and the relationships between them. Distributions for the chance action nodes are
obtained by solving the lower level models. There are no special-purpose policy links, rather
it is composed of only those types of nodes and dependency relationships between the nodes
that are found in traditional IDs. This allows I-IDs to be implemented and solved using
conventional application tools that target IDs.

Note that we may view the level l I-ID as a NID [13]. Specifically, each of the level l − 1
models within the model node are blocks in the NID (see Fig. 5). If the level l = 1, each
block is a traditional ID, otherwise if l > 1, each block within the NID may itself be a NID.
Note that within the I-IDs (or IDs) at each level, there is only a single decision node. Thus,
our NID does not contain any MAIDs.

4.2 Interactive dynamic influence diagrams (I-DIDs)

Interactive dynamic influence diagrams (I-DIDs) extend the formalism of interactive influence
diagrams (I-IDs) to solve dynamic decision problems, just as DIDs extend IDs. We show a
general level l I-DID for two time slices in Fig. 6.
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Fig. 5 A level l I-ID represented
as a NID. The probabilities
assigned to the blocks of the NID
are i’s beliefs over j’s models
conditioned on a physical state
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Fig. 6 An I-DID unrolled over two time horizons. The dotted arrow between the model nodes is called the
model update link

Note that the CPD, Pr(St+1|St , At
i , At

j ), of the chance node, St+1, is the transition func-

tion, Ti in the I-POMDPi,l , the CPD, Pr(Ot+1
i |St+1, At

i , At
j ), of the chance node, Ot+1

i ,
is the observation function, Oi . In addition to the model nodes and the dashed policy link,
what differentiates an I-DID from a DID is the model update link shown as a dotted arrow
in Fig. 6. We explained the semantics of the model node and the policy link in the previous
section; we describe the model update next.

The update of the model node over time involves two steps: First, given the candidate
models at time t , we identify the updated set of models that reside in the model node at time
t + 1. Recall from Sect. 3.1 that an agent’s intentional model includes its belief. Because the
agents act and receive observations, their models are updated to reflect their changed beliefs.
In some cases, the update may result in a model whose structure may be different from that
previously. Since the set of optimal actions for a model could include all the actions, and the
agent may receive any one of |� j | possible observations, the updated set at time step t + 1
will have at most |Mt

j,l−1||A j ||� j | models. Here, |Mt
j,l−1| is the number of models at time

step t , |A j | and |� j | are the largest spaces of actions and observations respectively, among
all the models. Second, we compute the new distribution over the updated models given the
original distribution and the probability of the agent performing the action and receiving the
observation that led to the updated model.

In Fig. 7, we show how the dotted model update link in the I-DID could be implemented.
If each of the two level l − 1 models ascribed to j at time step t results in one action, and
j could make one of two possible observations, then the model node at time step t + 1
contains four updated models (mt+1,1

j,l−1, mt+1,2
j,l−1, mt+1,3

j,l−1, and mt+1,4
j,l−1). These models differ in

their initial beliefs, each of which is the result of j updating its beliefs due to its action and
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Fig. 7 Representing the model update link between model nodes using chance nodes and dependency links
between them. Notice the growth in the number of models in the model node at t + 1 (highlighted in bold)

a possible observation. The decision nodes in each of the I-DIDs or DIDs that represent
the lower level models are mapped to the corresponding chance nodes, as mentioned pre-
viously.

Next, we describe how the distribution over the updated set of models (the distribution
over the chance node Mod[Mt+1

j ] in Mt+1
j,l−1) is computed. The probability that j’s updated

model is, say mt+1,1
j,l−1, depends on the probability of j performing the action and receiving

the observation that led to this model, and the prior distribution over the models at time
step t . Because the chance node At

j assumes the distribution of each of the action nodes
based on the value of Mod[Mt

j ], the probability of the action is given by this chance node.
In order to obtain the probability of j’s possible observation, we introduce the chance node
Ot+1

j , which depending on the value of Mod[Mt
j ] assumes the distribution of the obser-

vation node in the lower level model denoted by Mod[Mt
j ]. Analogous to At

j , the condi-

tional probability table of Ot+1
j is also a multiplexer modulated by Mod[Mt

j ]. Because
the probability of j’s observations depends on the physical state and the joint actions of
both agents, the chance nodes, O1

j and O2
j , are linked with St+1, A1

j , and A2
j respectively.3

Finally, the distribution over the prior models at time t is obtained from the chance node,
Mod[Mt

j ] in Mt
j,l−1. Consequently, the chance nodes, Mod[Mt

j ], At
j , and Ot+1

j , form the

parents of Mod[Mt+1
j ] in Mt+1

j,l−1. Notice that the model update link may be replaced by the
dependency links between the chance nodes that constitute the model nodes in the two time
slices.

Expansion of the I-DID over more time steps translates into repeating the two steps of
updating the set of models that form the values of the model node and adding the relationships
between the chance nodes, as many times as there are model update links. We note that the
possible set of models of the other agent j grows exponentially with the number of time
steps. For example, after T steps, there may be at most |Mt=1

j,l−1|(|A j ||� j |)T −1 candidate
models residing in the model node.

In Fig. 8 we show the two time-slice flat DID with the model nodes and the model update
link replaced by the chance nodes and the relationships between them. Chance nodes and
dependency links not in bold are standard, usually found in single agent DIDs.

3 Note that O1
j and O2

j represent j’s observations at time t + 1, and arise from different j’s models.
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Fig. 8 A flat DID obtained by replacing the model nodes and model update link in the I-DID of Fig. 6 with
the chance nodes and the relationships (in bold) as shown in Fig. 7. The lower level models are solved to
obtain the distributions for the chance action nodes

4.3 Mapping I-DIDs to I-POMDPs

Analogously to the relation between DIDs and POMDPs, elements of I-DIDs could be map-
ped to those of I-POMDPs as defined in Sect. 3.1. The values of the decision node, Ai in
Fig. 6, is the set of actions of agent i , and similarly for the chance node A j . Their joint is
the set of joint actions of both agents, A, in the definition of I-POMDPi,l . The values of the
chance node, S, and the observation node, Oi , are the sets of physical states and observations
of i , respectively, in the I-POMDP. The CPDs of the chance nodes, St+1 and Ot+1

i , are the
transition and observation functions, Ti and Oi of agent i in the I-POMDP. The utility table
of the value node, Ri , is the reward function, Ri of agent i in the I-POMDP.

The chance, decision, utility nodes and the associated edges in an I-DID constitute the
frame of an intentional model as defined in Sect. 3.1. As we mentioned previously, the model
node contains as its values the alternative computational models ascribed by i to the other
agent from the set, � j,l−1 ∪ SM j , where � j,l−1 and SM j were defined previously (Sect.
3.1). Thus, the set of pairs, each consisting of a value of node S and a model in node, M j,l−1,
constitutes the interactive state space, ISi,l , in I-POMDP. The joint probability distribution
over the chance node, S, and the node Mod[M j ] in the model node represents the top-level
probability distribution that agent i has over its interactive states, ISi,l .

As we may expect, the update of the model node over time closely relates to the belief
update process in Eq. 1. The update of agent j’s belief given its action and observation (the
term, SEθ̂ j

(bt
j,l−1, at

j , ot+1
j ) in Eq. 1) results in new models with updated beliefs at time

t + 1 in Fig. 8; one model for each combination of an optimal action and observation of j
that results in a unique belief. The distribution over the chance node, At

j , conditioned on
Mod[Mt

j ] is the distribution, Pr(at
j |θ t

j,l−1) appearing in Eq. 1, where θ t
j,l−1 is an I-DID or

DID in the model node. Finally, the updated distribution over the physical states and models
of j is the distribution over St+1 and Mod[Mt+1

j ] as obtained using the standard inference.

The inference propagates through parents of the Mod[Mt+1
j ] node, which is equivalent to
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Fig. 9 (a) Level 1 I-ID of agent i, (b) two level 0 IDs of agent j whose decision nodes are mapped to the
chance nodes, A1

j , A2
j , in (a), indicated by the dotted arrows. The two IDs differ in the distribution over the

chance node, TigerLocation

summing over at−1
j and ot

j in Eq. 1. Note that Mod[Mt+1
j ] is conditioned on the chance node

Ot+1
j thereby accounting for j’s observation function that appears in Eq. 1.

4.4 Example representations

In order to illustrate the usefulness of I-DIDs, we apply them to three illustrative problems.
We describe, in particular, the formulation of the I-DIDs for these examples.

4.4.1 Multiagent tiger problem

We begin our illustrations of using I-IDs and I-DIDs with a slightly modified version of the
multiagent tiger problem [14]. The problem has two agents, each of which can open the right
door (OR), the left door (OL) or listen (L). In addition to hearing growls (from the left (GL)
or from the right (GR)) when they listen, the agents also hear creaks (from the left (CL),
from the right (CR), or no creaks (S)), which noisily indicate the other agent’s opening one
of the doors or listening. When any door is opened, the tiger persists in its original location
with a probability of 95%. Agent i hears growls with a reliability of 65% and creaks with a
reliability of 95%. Agent j , on the other hand, hears growls with a reliability of 95%. Thus,
the setting is such that agent i hears agent j opening doors more reliably than the tiger’s
growls. This suggests that i could use j’s actions as an indication of the location of the tiger,
as we discuss later. Each agent’s preferences are as in the single agent game discussed in
the original version [19]. The transition, observation, and reward functions are as shown in
Appendix A.

Let us consider a particular setting of the tiger problem in which agent i considers two
distinct level 0 models of j . This is represented in the level 1 I-ID shown in Fig. 9. The two
IDs could differ, for example, in the probability that j assigns to the tiger being behind the
left door as modeled by the node TigerLocation.

Given the level 1 I-ID, we may expand it into the I-DID shown in Fig. 10. The model
node, Mt

j,0, contains the different DIDs that are expanded from the level 0 IDs in Fig. 9b.

123



390 Auton Agent Multi-Agent Syst (2009) 18:376–416

Tiger
Locationt

Growl&
Creakt

Ai
t

Ri

Tiger
Locationt+1

Growl&
Creakt+1

Ai
t+1

Ri

Mj,l-1
t

Aj
t

Mj,l-1
t+1

Aj
t+1

Fig. 10 Level 1 I-DID of agent i for the multiagent tiger problem. The model node contains level 0 DIDs of
agent j . At horizon 1, the models of j are IDs

The DIDs may have different probabilities about the tiger location at time step t . We get the
probability distribution of j’s actions in chance node At

j by solving the level 0 DIDs of j .
On performing the optimal action(s) at time step t, j may receive observations of the tiger’s
growls. This is reflected in new beliefs on the tiger’s position within j’s DIDs at time step
t +1. Consequently, the model node, Mt+1

j,0 , contains more models of j and i’s updated belief
on j’s possible DIDs.

4.4.2 Public good problem

The public good (PG) problem [12], consists of a group of M agents, each of whom must
either contribute some resource to a public pot or keep it for themselves. Since resources
contributed to the public pot are shared among all the agents, they are less valuable to the
agent when in the public pot. However, if all agents choose to contribute their resources, then
the payoff to each agent is more than if no one contributes. Since an agent gets its share of
the public pot irrespective of whether it has contributed or not, the dominating action is for
each agent to not contribute, and instead “free ride” on others’ contributions.

For simplicity, we assume that the game is played between N = 2 agents, i and j . Let
each agent be initially endowed with XT amount of resources. While the classical PG game
formulation permits each agent to contribute any quantity of resources (≤XT ) to the public
pot, we simplify the action space by allowing two possible actions. Each agent may choose
to either contribute (C) a fixed amount of the resources, or not contribute. The latter action is
denoted as defect (D). We assume that the actions are not observable to others. The value of
resources in the public pot is discounted by ci for each agent i , where ci is the marginal private
return. We assume that ci < 1 so that the agent does not benefit enough that it contributes
to the public pot for private gain. Simultaneously, ci N > 1, making collective contribution
Pareto optimal.

In order to encourage contributions, the contributing agents punish free riders but incur
a small cost for administering the punishment. Let P be the punishment meted out to the
defecting agent and cp the non-zero cost of punishing for the contributing agent. For sim-
plicity, we assume that the cost of punishing is same for both the agents. The one-shot PG
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Table 1 The one-shot PG game
with punishment

i/j C D

C 2ci XT , 2c j XT ci XT − cp, XT + c j XT − P
D XT + ci XT − P, c j XT − cp XT , XT
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Fig. 11 (a) Level 1 I-ID of agent i for the PG problem, (b) level 0 IDs of agent j with decision nodes mapped
to the chance nodes, A1

j and A2
j , in (a)

game with punishment is shown in Table 1. Let ci = c j , cp > 0, and if P > XT − ci XT ,
then defection is no longer a dominating action. If P < XT − ci XT , then defection is the
dominating action for both. If P = XT − ci XT , then the game is not dominance-solvable.

Though in the standard repeated PG game, the quantity in the public pot is revealed to all
the agents after each round of actions, we assume in our formulation that it is hidden from
the agents. Each agent may contribute a fixed amount, xc, or defect. An agent on performing
an action receives an observation of plenty (PY) or meager (MR) symbolizing the state of
the public pot. Notice that the observations are also indirectly indicative of agent j’s actions
because the state of the public pot is influenced by them. The amount of resources in agent
i’s private pot, is perfectly observable to i . The payoffs are analogous to Table 1.

We construct level 0 IDs for j that model two distinct types, one whose marginal private
return, c j , is high and does not punish free riders (encoded in the reward function), and
the other whose c j is low. While the former type always contributes, the latter chooses to
predominantly defect. We show the level 1 I-ID that represents this problem in Fig. 11. The
two level 0 IDs have different reward functions in the utility nodes R1

j and R2
j respectively.

Expanding the level 1 I-ID of agent i , we show the I-DID in Fig. 12. The two level 0 IDs
in Fig. 11b are unrolled into DIDs that are contained in the model node Mt

j,0. Since level 0
DIDs have different rewards in the utility nodes we get different probability distributions of
j’s actions in chance node At

j . At time step t, j may observe the status of the public pot as
indicated in chance node Pot Statust . This results in several more level 0 DIDs at time step
t + 1. Hence the model node, Mt+1

j,0 , contains j’s DIDs in which j has different beliefs on
the status of the public pot depending on its previous observations.
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Fig. 12 Level 1 I-DID of agent i . The model node contains level 0 DIDs of agent j , which reduce to IDs at
horizon 1

4.4.3 Online shopper’s dilemma

Our third example application is in the area of e-commerce and inspired by the behavior
of real-world users on online auction portals such as eBay. We consider the scenario where
the seller and the buyer will finalize their transaction, after an agreement on the price of
some merchandise. The seller will deliver to the buyer the agreed upon item and the buyer
will transfer to the seller an amount of money, simultaneously. We consider multiple such
transactions occurring sequentially between the buyer and the seller.

As is sometimes the case, the seller may choose to deliver a substandard item to the
buyer, while the buyer may elect to transfer a partial amount of the money. Such actions are
dependent, in part, on the reputation of the online portal—portals with strict policies against
fraud experience less fraudulent behavior—and on the trustworthiness of the seller. The repu-
tations of the portals are often inferred from online reviews which may be good (G) or bad (B).

We model the decision situations of the buyer and the seller using I-DIDs. We suppose
that both the buyer, i , and the seller, j , have a valuation for the item. The valuations are
denoted by vi and v j , respectively, and they represent how much the item is worth to the
participants. We assume that the participants have already agreed on the price, ci j , for the
item, but that the money has not been transferred. Agent i may transfer the full money, ci j ,
or a partial amount, γ ci j (discount factor: γ ∈ (0, 1]), to the seller j . Simultaneously, agent
j may deliver items of differing quality levels. For the sake of simplicity, we assume that the
delivered item may be of a high or a low quality.

If the delivered item is of low quality, it will be worth αvi to the buyer, while the item will
be worth βv j to the seller, where 0 < α, β ≤ 1. Thus the buyer will stand to make αvi − γ ci j ,
while the seller will gain γ ci j −βv j . We observe that this game has a pair of dominating
strategies, which prescribes the seller to deliver a low quality item and the buyer to transfer
a partial amount of the money, given the conditions on the parameters.

Often, online portals implement ways to punish fraudulent users. For example, eBay
immediately suspends sellers against whom a large number of complaints have been received.
We implement a simple punishment mechanism whereby the gain from a transaction is
reduced by pi if only the buyer cheats by transferring a partial amount of money, p j if only
the seller commits fraud by delivering a low quality item, or a common amount of pi j , if both
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Table 2 The one-shot online shopping transaction with punishment

i/j HighQuality (HQ) LowQuality (LQ)

FullMoney (FM) vi − ci j , ci j − v j αvi − ci j , ci j − βv j − p j
PartialMoney (PM) vi − γ ci j − pi , γ ci j − v j αvi − γ ci j − pi j , γ ci j − βv j − pi j

The buyer may choose to transfer the full amount or a partial amount of the money and the seller may elect to
deliver the item of high or low quality (possibly defective)
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Fig. 13 (a) Level 1 I-ID of the buyer, i , (b) level 0 IDs of the seller, j , with decision nodes mapped to the
chance nodes, Deliver t,1

j and Deliver t,2
j , in (a)

cheat. The punishments (pi , p j , and pi j ) depend on the quality of the portal. The one-shot
transaction with punishment is shown in Table 2.

Depending on pi j , notice that the buyer’s transfer of a partial amount and the seller’s
delivery of a low quality item are no longer a dominating strategy pair. We show the level 1
I-ID representing the buyer’s decision problem in Fig. 13. We show two level 0 models of the
seller represented using IDs. The models may represent sellers with different beliefs on the
quality of the portal and the buyer’s actions. For example, one model could be of a mistrusting
seller that initially believes that the portal does not strictly enforce anti-fraud policies and
that the buyer is likely to transfer a partial amount of the money. The other model could be
of a trusting seller.

We expand the level 1 I-ID into an I-DID and show the I-DID in Fig. 14. The model node,
Mt

j,0, contains the level 0 DIDs, which may have different beliefs on the portal quality or the
buyer’s behavior. Chance node Delivert

j captures the probability of the seller’s actions when
the level 0 DIDs are solved in the model node.

5 Exact solutions of I-DIDs

The solution to a level l I-DID for agent i expanded over T time steps proceeds in a bottom-up
manner and may be carried out recursively. For the purpose of illustration, let l = 1 and T = 2.
The solution method uses the standard look-ahead technique, projecting the agent’s action
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Fig. 14 Level 1 I-DID of the buyer. The model node contains level 0 DIDs of the seller (IDs at horizon 1)

and observation sequences forward from the current belief state [31], and finding the possible
beliefs that i could have in the next time step. Because agent i has a belief over j’s models as
well, the look-ahead includes finding out the possible models that j could have in the future.
Consequently, each of j’s subintentional or level 0 models (represented using a standard
DID) in the first time step must be solved to obtain its optimal set of actions. These actions
are combined with the set of possible observations that j could make in that model, resulting
in an updated set of candidate models (that include the updated beliefs) that could describe
the behavior of j in the next time step. Beliefs over this updated set of candidate models
are calculated using the standard inference methods involving the dependency relationships
between the model nodes as shown in Fig. 7. We note the recursive nature of this solution: in
solving agent i’s level 1 I-DID, j’s level 0 DIDs must be solved first. If the nesting of models
is deeper, all models at all levels starting from 0 are solved in a bottom-up manner.

We briefly outline the recursive algorithm for solving agent i’s level l I-DID expanded
over T time steps with one other agent j in Fig. 15. We adopt a two-phase approach: Given a
two time-slice I-DID of level l with all lower level models also represented as two time-slice
I-DIDs or DIDs (if level 0), the first step is to expand the level l I-DID over T time steps
adding the dependency links and the conditional probability distributions for each node. We
particularly focus on establishing and populating the model nodes (lines 3–11). Note that
Range(·) returns the values (lower level models) of the random variable given as input (model
node). We consider j’s action node At

j (line 5) and the observation node Ot+1
j (line 7). Both

of them, together with the model node Mt
j,l−1, become parents of the new model node, Mt+1

j,l−1

(line 11). We add the model update link between Mt
j,l−1 and Mt+1

j,l−1. We build the new I-IDs
at time t +1 and construct the I-DIDs by connecting relevant chance and decision nodes bet-
ween time t and t +1 (line 12). We specify the CPDs that reflect the transition and observation
functions in the dynamic IDs (line 13). In the second phase, if the input is an I-DID, we substi-
tute the policy links, model nodes and the model update links between them in the expanded
I-DID with the chance nodes and dependency relationships between them as per Fig. 7,
resulting in a flat DID similar to Fig. 8 (lines 14–15). We may use the standard look-ahead
technique projecting the action and observation sequences over T time steps in the future, and
backing up the expected utility values of the reachable beliefs (see [36], and [31] for a more
introductory description). Other more efficient ways of solving DIDs could also be used [6].
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Fig. 15 Algorithm for exactly solving a level l ≥ 1 I-DID or level 0 DID expanded over T time steps

Note that we may optimize the implementation of this algorithm by reusing computations.
In particular, j’s level l−1 models in the model node at time t+1 will contain the same beliefs
as those encountered in the look-ahead search tree when the l − 1 I-DID (or DID) is first
solved. Because solving the I-DID (or DID) involves computing the solutions at these beliefs
as well, we need not recursively invoke the algorithm for solving j’s models at subsequent
time steps. Instead, we may obtain it from the previously computed (and cached) solutions.
In order to exploit this optimization, line 4 of Fig. 15 is performed only if t = 0, otherwise
the previously computed solutions are utilized at subsequent time steps. These intermediate
solutions should be stored for later use while performing line 16.

As we mentioned previously, the 0th level models are the traditional DIDs. Their solutions
provide probability distributions over actions of the agent modeled at that level to I-DIDs
at level 1. Given probability distributions over other agents’ actions the level 1 I-DIDs can
themselves be solved analogously to DIDs, and provide probability distributions to yet higher
level models. Assume that the number of models considered at each level is bound by a
number, M . Solving an I-DID of level l is then equivalent to solving O(Ml) DIDs. Depending
on the values of M and l, the level l I-DID may be expensive to solve in practice.
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Table 3 Run times for exactly
solving both the I-DID and the
I-POMDP for PG and online
shopper’s dilemma problems
(Pentium 4, 3.0GHz, 1GB RAM,
WinXP)

Problem Representation Runtime

Multiagent I-DIDs 0.547 s
PG I-POMDPs 12.166 s
Multiagent I-DIDs 0.203 s
Shopping I-POMDPs 0.435 s

5.1 Computational advantages of I-DIDs over I-POMDPs

I-DIDs explicitly model variable dependencies that are usually hidden in the enumera-
tive representations of I-POMDPs. The compactness of I-DIDs makes it feasible to handle
domains having multiple variables. For example, in the PG game we observe that we need
to consider joint states of two variables, PrivatePot and PublicPot. Since PrivatePot and
PublicPot have 6 and 11 possible values respectively in our context, we need to enumerate
66 states in the I-POMDP definition. Consequently, in the enumerative representation, we
need to specify a large transition table (of size 662 × 2 × 2 numbers since there are two
decision options for each player), which grows exponentially in complexity. In contrast, the
I-DID representation decomposes the complex state into the two variables, PrivatePotti and
PublicPott , and models the dependencies over time. As we see in the I-DID in Fig. 12, the
status of the private pot at time t does not affect the contents of the public pot at t +1. In addi-
tion, agent j’s actions do not affect the private pot of i . Consequently, we only need to specify
two smaller tables of at most 62 × 2 numbers in the CPD of PrivatePott+1

i and 112 × 2 × 2
numbers in the CPD of PublicPott+1. The outcome of this more compact representation is
that the I-DID exhibits some computational advantages over the I-POMDP.

Table 3 shows the run times for solving the I-DID and the I-POMDP for two domains -
PG and online shopper’s dilemma. We used the I-DIDs shown in Figs. 12 and 14, for the
two domains respectively. For comparison, we formulate the I-POMDP definitions of the
two domains as in Sect. 3.1. Both the I-DIDs and the I-POMDPs are singly nested with two
models of the other initially and each expanded to a horizon of three. We utilized a reduced
version of the PG problem as our I-POMDP implementation is unable to solve the version
with 66 states and two models of the other agent over a horizon of three.

We observe that the I-DID solves relatively efficiently in comparison to the enumerative
representation of the I-POMDP for the PG problem. The I-DID exhibits a significant compu-
tational advantage because it adopts a factored representation of the state space and exploits
the conditional independence when applying the look-ahead and backup methods during the
solution. Further, the computational improvement is obtained because I-DIDs allow models
of j to be also represented as DIDs. In comparison, for the online shopper’s dilemma, the
computational advantage is not significant as the state is simple, represented using a single
variable. The reduced runtime is likely due to a more efficient implementation of the I-DID.

5.2 Example solutions

We continue with the illustrations and describe solutions of the example I-DIDs shown in
Sect. 4.4. A good indicator of the usefulness of formalisms for decision making such as
I-DIDs is the emergence of realistic social behaviors in their prescriptions. Hence, we focus
on settings that simulate conditions sufficient for the emergence of such behaviors. We show
how changes in the parameters of the problem and the models lead to interesting behaviors.
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Fig. 16 Emergence of (a) conditional followership, and (b) blind followership in the third step in the tiger
problem. Behaviors of interest are in bold. “*” is a wildcard, and denotes any one of the observations

5.2.1 Followership and leadership in the multiagent tiger problem

We consider a particular setting of the persistent multiagent tiger problem mentioned
previously, in which agent i believes that j’s preferences are similar to its own—both of
them want to get the gold—and j’s hearing is more reliable in comparison to itself. As an
example, suppose that j , on listening can discern the tiger’s location 95% of the times com-
pared to i’s 65% accuracy. Agent i does not have any initial information about the tiger’s
location. In other words, i’s single-level nested belief, bi,1, assigns 0.5 to each of the two
locations of the tiger. In addition, i considers two models of j , which differ in j’s flat level 0
initial beliefs. According to one model, j assigns a probability of 0.9 that the tiger is behind
the left door, while the other model assigns 0.1 to that location. These extreme initial beliefs
of j allow j to possibly open a door in the next time step itself. i is undecided on these two
models of j .

If we vary i’s hearing ability (by varying the probabilities in the CPD of the observation
node, Growl&Creak), and solve the corresponding level 1 I-ID, shown in Fig. 9, expanded
over three time steps, we obtain the normative behavioral policies shown in Fig. 16 that
exhibit followership behavior. If i’s probability of correctly hearing the growls is 0.65, then
as shown in the policy in Fig. 16a, i begins to conditionally follow j’s actions: i opens the
same door that j opened previously iff i’s own assessment of the tiger’s location confirms
j’s pick. If i loses the ability to correctly interpret the growls completely, it blindly follows
j and opens the same door that j opened previously (Fig. 16b).

We observed that a single level of belief nesting—beliefs about the other’s models—was
sufficient for followership to emerge in the tiger problem. However, the epistemological requi-
rements for the emergence of leadership are more complex. For an agent, say j , to emerge as
a leader, followership must first emerge in the other agent i . As we mentioned previously, if i
is certain that its preferences are identical to those of j , and believes that j has a better sense
of hearing, i will follow j’s actions over time. Agent j emerges as a leader if it believes that
i will follow it, which implies that j’s belief must be nested two levels deep to enable it to
recognize its leadership role. Realizing that i will follow presents j with an opportunity to
influence i’s actions in the benefit of the collective good or its self-interest alone.

For example, in the tiger problem, let us consider a setting in which if both i and j open
the correct door, then each gets a payoff of 20 that is double the original. If j alone selects
the correct door, it gets the payoff of 10. On the other hand, if both agents pick the wrong
door, their penalties are cut in half. In this setting, it is in both j’s best interest as well as
the collective betterment for j to use its expertise in selecting the correct door, and thus be
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Fig. 17 Emergence of deception between agents in the tiger problem. Behaviors of interest are in bold. ‘*’
denotes as before. (a) Agent i’s policy demonstrating that it will blindly follow j’s actions. (b) One of the two
optimal policies. Even though j is almost certain that the tiger is on the right, it will start by selecting OR,
followed by OL, in order to deceive i . Other optimal policy is to always open the left door, which does not
involve deceiving i

a good leader. However, consider a slightly different problem in which j gains from i’s loss
and is penalized if i gains. Specifically, let i’s payoff be subtracted from j’s, indicating that
j is antagonistic toward i - if j picks the correct door and i the wrong one, then i’s loss of
100 becomes j’s gain. Here, let the tiger persist in its original location with a probability
of 1. Agent j believes that i (incorrectly) thinks that j’s preferences are those that promote
the collective good and that it starts off by believing with 99% confidence where the tiger is.
Because i believes that its preferences are similar to those of j , and that j starts by believing
almost surely that one of the two is the correct location (two level 0 models of j), i will start
by following j’s actions. We build the I-ID (shown in Fig. 9) so that agent j is at the top level
and expand it over three time steps. We first show i’s normative policy on solving its expanded
I-DID in Fig. 17a. The policy demonstrates that i will blindly follow j’s actions. Since the
tiger persists in its original location with a probability of 1, i will select the same door again.

If j begins the game with a 99% probability that the tiger is on the right, solving j’s I-DID
nested two levels deep, results in two policies one of which is shown in Fig. 17b. Even though
j is almost certain that OL is the correct action, it will start by selecting OR, followed by OL.
Agent j’s intention is to deceive i who, it believes, will follow j’s actions, so as to gain $110
in the second time step, which is more than what j would gain if it were to be honest. Here, j’s
expected reward in the first time step is: (0.99 × −99)+ (0.01 × 11) = −97.9. Note that i lis-
tens in the first time step and incurs a reward of −1, which is subtracted from j’s reward. Sub-
sequently, when j does OL, the expected reward is: (0.99 × 110)+ (0.01 × −110) = 107.8.
Thus, the total of the first two steps is 9.9. The second optimal policy is the non-deceptive
one where agent j always opens the left door. After the first two steps, the expected reward of
j is 9.9 as well. Note that both policies open the left door in the last step. Thus, agent j could
choose to deceive the other as both deceptive and non-deceptive policies are equally optimal.

5.2.2 Altruism and reciprocity in public good problem

Behaviors of human players in empirical simulations of the PG problem differ from the
normative predictions. The experiments reveal that many players initially contribute a large
amount to the public pot, and continue to contribute when the PG problem is played repeatedly,
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Fig. 18 (a) An altruistic level 1
agent always contributes. (b) A
reciprocal agent i starts off by
defecting followed by choosing to
contribute or defect based on its
observation of plenty (indicating
that j is likely altruistic) or
meager ( j is non-altruistic)
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though in decreasing amounts [5]. Many of these experiments [10] report that a small core
group of players persistently contributes to the public pot even when all others are defecting.
These experiments also reveal that players who persistently contribute have either altruistic
or reciprocal preferences matching expected cooperation of others.

We formulate a sequential version of the PG problem with punishment mentioned pre-
viously, from the perspective of agent i . Borrowing from the empirical investigations of the
PG problem [10], we construct level 0 IDs for j that model altruistic and non-altruistic types
(Fig. 11). Specifically, our altruistic agent has a high marginal private return (c j is close to
1) and does not punish others who defect. On the other hand, the non-altruistic type has a
low marginal private return and punishes defectors. Let xc = 1 and the level 0 agent be
punished half the times it defects. With one action remaining, both types of agents choose
to contribute to avoid being punished. With two actions to go, the altruistic type chooses to
contribute, while the other defects. This is because c j for the altruistic type is close to 1,
thus the expected punishment, 0.5P > (1 − c j ), which the altruistic type avoids. Because
c j for the non-altruistic type is less, it prefers not to contribute. With three steps to go, the
altruistic agent contributes to avoid punishment (0.5P > 2(1 − c j )), and the non-altruistic
type defects. For greater than three steps, while the altruistic agent continues to contribute to
the public pot depending on how close its marginal private return is to 1, the non-altruistic
type prescribes defection.

We analyzed the decisions of an altruistic agent i (ci = 0.95, P = 0.3, cp = 0) modeled
using a level 1 I-DID expanded over 3 time steps. i ascribes the two level 0 models, mentioned
previously, to j (see Fig. 11). If i believes with a probability 1 that j is altruistic, i chooses
to contribute for each of the three steps. This behavior persists when i is unaware of whether
j is altruistic (Fig. 18a, and when i assigns a high probability to j being the non-altruistic
type. However, when i believes with a probability 1 that j is non-altruistic and will thus
surely defect, i chooses to defect to avoid the punishment cost and because its marginal
private return is less than 1. These results demonstrate that the behavior of our altruistic
type resembles that found experimentally. The non-altruistic level 1 agent chooses to defect
regardless of how likely it believes the other agent to be altruistic.

We analyzed the behavior of a reciprocal agent type (ci = 0.75, P = 0.3, cp = 0.03) that
matches expected cooperation or defection. The reciprocal type’s marginal private return is
similar to that of the non-altruistic type, however, it obtains a greater payoff when its action
is similar to that of the other. We consider the case when the reciprocal agent i is unsure of
whether j is altruistic and believes that the public pot is likely to be half full. For this prior
belief, i chooses to defect. On receiving an observation of plenty, i decides to contribute,
while an observation of meager makes it defect (Fig. 18b. This is because an observation of
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plenty signals that the pot is likely to be greater than half full, which results from j’s action
to contribute. Thus, among the two models ascribed to j , its type is likely to be altruistic
making it likely that j will contribute again in the next time step. Agent i therefore chooses
to contribute to reciprocate j’s predicted action. An analogous reasoning leads i to defect
when it observes a meager pot. With one action to go, i believing that j contributes, will
choose to contribute too to avoid punishment regardless of its observations.

5.2.3 Mistrust in the online shopper’s dilemma problem

The buyer’s dilemma in the online shopping problem, described in Sect. 4.4, is, in part, due to
its uncertainty over the seller’s actions, which in turn are predicated on what the seller believes
about the buyer’s actions. The seller j , mistrusting the buyer i , especially in a portal that does
not strictly enforce anti-fraud policies, may believe that the buyer will very likely transfer a
partial amount of the agreed price. We represent this situation in a level 0 ID modeling the
seller and utilize the following parameters: vi = 110, v j = 90, ci j = 100, α = 0.8, β = 0.8,
and γ = 0.8. We assume that the punishments for cheating are larger if the portal is of a high
quality (pi = p j = 30 and pi j = 15) as compared to a portal that does not strictly guard
against fraud (pi = p j = 25 and pi j = 10).

Solution of the level 0 ID expanded over three time steps generates a policy that prescribes
the seller to always deliver a low quality item no matter what the reviews about the portal
indicate. This is because the loss expected by the seller in delivering a high quality item but
receiving a partial amount is more than that expected from being punished for cheating. On
the other hand, for a trusting seller that very likely believes that the buyer will transfer the
full amount of money, the level 0 ID will prescribe the seller to deliver items of high quality
irrespective of the review of the portal. This is due to the large punishment that the seller
expects if it unilaterally decides to cheat by delivering a low quality item while receiving the
full price. The expected punishment exceeds the gain expected from delivering a low quality
item. Finally, if the seller is uncertain about the behavior of the buyer and the quality of
the portal, it initially delivers a high quality item. Subsequently, positive or negative reviews
about the portal will then guide the seller’s action of delivering a high or low quality item,
respectively.

A buyer modeled using the level 1 I-ID, shown in Fig. 13 and expanded to three time
steps, which is uncertain whether the seller is trusting (delivers high quality items only) or
not, will utilize its observations of the reviews of the portal to guide its actions. We show the
corresponding policy tree in Fig. 19a. This behavior persists even when the buyer believes
that the seller itself uses the reviews to guide its actions. However, a mistrusting buyer who
believes that the seller is more likely to be mistrusting will transfer a partial amount of the
money the first two times irrespective of the reviews, but will transfer the full amount if
the review of the portal is still good. This is because two good reviews will shift the buyer’s
opinion of the seller to be trusting and consequently will deliver a high quality item (Fig. 19b).

We continue with the analysis by lifting the I-DIDs to one more level, and administer less
punishment on the seller (p j = 19.5 and pi j = 3 for a good quality portal while p j = 19 and
pi j = 2 for a portal of bad quality). We suppose that a seller modeled using an I-DID at level
2 believes that the buyer (at level 1) follows the policy given in Fig. 19a. As we mentioned
before, this behavior of the buyer arises because the buyer is uncertain of whether the seller
(at level 0) is trusting or not. If we consider a seller who strongly prefers to deliver a low
quality item if the buyer transfers a full amount (regardless of the punishment incurred), the
seller adopts a policy that it believes will deceive the buyer into likely transferring the full
amount while it transfers a low quality item. We show the corresponding policy tree of the
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Fig. 19 (a) A buyer who is uncertain about whether the (level 0) seller is trusting or not utilizes the portal
reviews to condition its actions. (b) A mistrusting buyer who believes that the seller is likely mistrusting will
transfer a partial amount of the money except for the case where it observes good reviews of the portal twice
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Fig. 20 Deceptive behavior of the seller modeled using a level 2 I-DID in the shopping problem. Though the
seller expects the buyer to transfer a partial amount of money, it delivers high quality items. This misleads the
buyer into believing that the portal is of a high quality and consequently transfers the full amount of money.
At this point, the seller delivers a low quality item incurring the maximum profit

seller in Fig. 20. We first note that the seller gains the most if it delivers a low quality item
while the buyer transfers the full amount. Notice that despite the seller standing to lose money
immediately, it decides to deliver a high quality item while it expects the buyer to transfer a
partial amount of money. This is followed by the delivery of another high quality item. Both
these actions are deceptive as they serve to mislead the buyer (through its observations) into
thinking that the portal is likely a good one, which causes the buyer to likely transfer the full
amount in the final step. The seller expecting this delivers a low quality item in the last step.

6 Approximate solutions of I-DIDs

Because models of the other agent, j , are included as part of the model node in i’s I-DID,
solution of the I-DID suffers from not only the high dimensionality of the state space due
to the possibly large number and complexity of models of j , but also the curse of history
responsible for an exponential number of candidate models of j over time. We focus on
mitigating the impact of these factors by holding constant the number of candidate models
of j in the model node of the I-DID, at each time step.4 In the following section, we show
an approach for maintaining a constant number of models of the other agent over time.

4 We do not focus on approximating the standard inference and dynamic programming techniques used in
solving DIDs. See [25] for such an effort.
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Fig. 21 Horizon 1 solution of
j’s level 0 model in the tiger
problem. Note the belief ranges
corresponding to different
optimal actions
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6.1 Model clustering

We explore an approximation technique based on clustering the agent models and selecting
K , where 0 < K � M , representative models from the clusters. In order to initiate clustering,
we begin by identifying the initial means around which the models will be clustered. The
selection of the initial means is crucial as we wish to select them minimally and avoid
discarding models that are behaviorally distinct from the representative ones.

6.1.1 Selecting the initial means

For the sake of illustration, we assume that the models of j are intentional and differ only
in their beliefs. Our arguments may be extended to models that differ in their frames and
subintentional models as well. In order to selectively pick 0 < K � M models of j , we begin
by identifying the behaviorally equivalent regions of j’s belief space [30]. These are regions
of j’s belief simplex in which the beliefs lead to an identical optimal policy. As a simple
example, we show in Fig. 21 the behaviorally equivalent regions of j’s level 0 belief simplex
for the tiger problem mentioned in Sect. 5.2. Here j’s hearing is 85% accurate. The agent
opens the right door (OR) if its belief that the tiger is behind the right door, P(TR), is less
than 0.1. It will listen (L) if 0.1 < P(TR) < 0.9 and open left door (OL) if P(TR) > 0.9.
Therefore, each of the optimal policies spans over multiple belief points. For example, OR
is the optimal action for all beliefs in the set [0–0.1). Thus, beliefs in [0–0.1) are equivalent
to each other in that they induce the same optimal behavior. However, notice that at P(TR) =
0.1, the agent is indifferent between OR and L.

We select the initial means as those that lie on the intersections of the behaviorally equi-
valent regions. This allows models that are likely to be behaviorally equivalent to be grouped
on each side of the means. We label the intersection points as sensitivity points (SPs) and
define them below.

Definition 2 (SP) Let b j,l−1 be a level l −1 belief of agent j and OPT(〈b j,l−1, θ̂ j 〉) be the set
of optimal policies for this belief. Then b j,l−1 is a sensitivity point SP), if for any ε > 0, there
exists a belief, b′

j,l−1 s.t. ||b j,l−1 −b′
j,l−1||1 < ε and OPT(〈b j,l−1, θ̂ j 〉) �= OPT(〈b′

j,l−1, θ̂ j 〉).
Referring to Fig. 21, P(TR) = 0.1 is an SP because even infinitesimally small deviations

from 0.1 lead to either OR or L as the optimal action, while at 0.1 the agent is indifferent
between the two.

In order to compute the SPs, we observe that they are the beliefs at the non-dominated
intersection points (or lines) between the value functions of pairs of policy trees. The linear
program (LP) in Table 4 provides a straightforward way of computing the SPs. If the inter-
sections are lines, then the LP returns a point on this line. For each pair of possible policies
of j, π ′

j and π ′′
j as input, we solve the LP in Table 4.
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Table 4 LP for exact
computation of SPs

LP_SP (π ′
j , π

′′
j , � j )

Objective: Constraints:
Maximize τ ∀π j ∈ � j /{π ′

j , π
′′
j }

Variable: b j,l−1 · V al j,l−1(π ′
j ) − b j,l−1 · V al j,l−1(π j ) ≥ τ

b j,l−1 b j,l−1 · V al j,l−1(π ′
j ) − b j,l−1 · V al j,l−1(π ′′

j ) = 0
b j,l−1 · 1 = 1

If τ ≥ 0, then the belief, b j,l−1, is a SP. Here, � j is the space of all horizon T policy trees,

which has the cardinality O(|A j |2|� j |T ). The computation of the value function, V al j,l−1(·),
requires solutions of agent i’s level l − 2 I-DIDs. These may be obtained exactly or approxi-
mately; we may recursively perform the model clustering and selection to approximately
solve the I-DIDs, as outlined in this section. The recursion bottoms out at the 0th level where
the DIDs may be solved exactly. If there are at most K models at each level, then we need
solve O(K l−1) models to obtain the value function.

The LP needs to be solved O(|A j |4|� j |T ) times to find the SPs exactly, which is com-
putationally expensive. We approximate this computation by randomly selecting K policy
trees from the space of policies and invoking LP_SP (π ′

j , π
′′
j ,�

K
j ), where �K

j is the reduced

space of K policy trees, and π ′
j , π

′′
j ∈ �K

j . Computation of the set of new SPs, denoted by

SPK , requires the solution of O(K 2) reduced LPs allowing computational savings.
In addition to the sensitivity points, we may also designate the vertices of the belief simplex

as the initial means. This allows models with beliefs near the periphery of the simplex and
away from the SPs, to be grouped together.

With each mean, say the nth SP in SPK , we associate a cluster, Mn
j,l−1, of j’s models.

The models in Mn
j,l−1 are those with beliefs that are closer to the nth SP than any other,

with ties broken randomly. One measure of distance between belief points is the Euclidean
distance, though other metrics such as the L1 may also be used.

6.1.2 Iterative clustering

The initial clusters group together models of the other agent possibly belonging to mul-
tiple behaviorally equivalent regions. Additionally, some of the SPK may not be candidate
models of j as believed by i . In order to promote clusters of behaviorally equivalent models
and segregate the non-behaviorally equivalent ones, we update the means using an iterative
method often utilized by the k-means clustering approach [22].

For each cluster, Mn
j,l−1, we recompute the mean belief of the cluster and discard the

initial mean, SPn
K , if it is not in the support of i’s belief. The new mean belief of the cluster,

b̄ j,l−1, is:

b̄ j,l−1 =
∑

b j,l−1∈Bn
j,l−1

b j,l−1

|Mn
j,l−1|

(4)

Here, the summation denotes additions of the belief vectors, Bn
j,l−1is the set of beliefs in

the nth cluster, and |Mn
j,l−1| is the number of models in the nth cluster.

Next, we recluster the models according to the proximity of their beliefs to the revised
means. Specifically, models are grouped with the mean to which their respective beliefs are
the closest, and all ties are broken randomly. The steps of recomputing the means (Eq. 4) and
reclustering using the revised means are repeated until convergence ie. the means no longer
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Fig. 22 An illustration of the iterative clustering method. The gray vertical lines are the belief points in the
models while the black ones are the means. The SPs and the vertices of the belief simplex form the initial
means. Notice the movement of the means over the iterations. Once the means have converged, we select
K = 10 models

change. Intuitively, this iterative technique converges because over increasing iterations less
new models will be added to a cluster, thereby making the means gradually invariant. We
illustrate example movements of the means and clusters of beliefs over multiple iterations in
Fig. 22.

6.1.3 Model selection

Given the stable clusters, we select a total of K representative models from them. Depending

on its population, the nth cluster contributes, kn = |Mn
j,l−1|
M × K (rounded off to the floor

integer) models to the set. The kn models whose beliefs are the closest to the mean of the
cluster are selected for inclusion in the set of models that are retained. Remaining models
in the cluster are discarded. The selected models provide representative behaviors for the
original set of models included in the cluster.

We compose the three steps of (i) identifying initial means, (i i) iterative clustering, and
(i i i) selecting K models in the algorithm KModelSelection shown in Fig. 23.

The algorithm for KModelSelection takes as input the set of models to be pruned, M j,l−1,
current horizon H of the I-DID, and the parameter K . We compute the initial means—these
are the sensitivity points, S PK , obtained by solving the reduced LP of Table 1 (line 1; vertices
of the belief simplex may also be added). Each model in M j,l−1 is assigned to a cluster based
on the distance of its belief to a mean (lines 2–9). The algorithm then iteratively recalculates
the means of the clusters and reassigns the models to a cluster based on their proximity to the
new means of the clusters. These steps (lines 10–16) are carried out until the means of the
clusters no longer change. Given the stabilized clusters, we calculate the contribution, kn , of
the nth cluster to the set K of models (line 18), and pick the kn models from the cluster that
are the closest to the mean (lines 19–20).

The models in the model node of i’s I-DID, Mt+1
j,l−1, are pruned to include just the K

models. These models form the values of the chance node, Mod[M j ] in time step t + 1.
We show the algorithm for approximately solving I-DIDs in Fig. 24. The algorithm is a
slight variation of the one in Fig. 15 that solves I-DIDs exactly. In particular, on generating
the candidate models in the model node, Mt+1

j,l−1, during the expansion phase (lines 3–9),
we cluster and select K models of these using the procedure KModelSelection. Notice that
models at all levels will be clustered and pruned. We note that our approach is more suited
to situations where agent i has some prior knowledge about the possible models of others,
thereby facilitating the clustering and selection.
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Fig. 23 Algorithm for clustering and selecting K models

6.2 Discussion

Although we need not recursively solve models of agent j at subsequent time steps in the
I-DID since we could obtain their solutions from previous computations (see Sect. 5), clus-
tering provides significant improvements. Specifically, it mitigates the impact of the curse of
dimensionality affecting agent i and the curse of history afflicting j by reducing the number
of models in the model node, at each time step and at every nesting level. The number of
models otherwise increases exponentially. Hence, this saves on the size of the interactive
state space. Furthermore, because typically, K � M , it helps reduce the space of models that
are considered initially and thereby in subsequent time steps as well. All of this helps speed
up the solution of I-DIDs and makes it possible to evaluate I-DIDs for longer horizons.

We selected the initial means as those that lie on the intersections of the behaviorally
equivalent regions. This facilitates groups of behaviorally equivalent models to be grouped
with a mean, and avoids behaviorally disparate models in the outer regions of a cluster, which
may likely get pruned.

Other ways of selecting the means may also seem plausible. For example, the initial means
could be the centers of the behaviorally equivalent regions. However, for small regions many
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Fig. 24 Algorithm for approximately solving a level l ≥ 0 I-DID using model clustering

0 0.9P(TR)0.1 1.0

Fig. 25 Initial means are the centers of behaviorally equivalent regions. Belief points shown as red dashed
lines are grouped into clusters that span multiple behavioral regions. As they are further away from the means,
they will likely be discarded when representative models are selected

models that do not belong to the region and hence are not behaviorally equivalent may also
be grouped together, as we illustrate in Fig. 25. As these models are likely to be further away
from the means, they are prone to be pruned thereby contributing a larger loss in the optimality
of the solution. Another way would be to distribute the initial means uniformly over the belief
simplex. However, this approach is also likely to produce clusters with behaviorally disparate
models in the outer regions, because the clusters may span over more than one behaviorally
equivalent region.

A problem encountered in k-means clustering is that of the clustering converging to a
local optimum—the final clusters may not accurately reflect the spatial distribution of the
candidate models. This is in part due to the selection of the initial means around which the
clustering is initiated. As we mentioned previously, we seek to form clusters of behaviorally
equivalent models in order to avoid discarding models that are behaviorally disparate when
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we select the representative models from each cluster. In this regard and as demonstrated
above, we believe that our choice of the initial means achieves this objective. Furthermore,
as we retain K models, we may end up picking models that were incorrectly clustered as
we increase K . Thus the effect of increasing K is to reduce the influence of local optima.
This is aptly demonstrated by our empirical results which show the quality of the solution
approaching optimal as we increase K .

Finally, we note that the idea of behaviorally equivalent models also recently appeared in
[29]. However, Pynadath and Marsella do not provide a method that involves clustering the
models as we do. Furthermore, our approach is generally applicable to other representations
(besides I-DIDs) that model other agents in a multiagent setting.

7 Computational savings, convergence and error bound

The computational complexity of solving I-DIDs is primarily due to the large number of
models that must be solved over T time steps. At some time step t , the number of possible
models of the other agent j is M0(|A j ||� j |)t where M0 is the number of models considered
initially. The nested modeling further contributes to the complexity since solutions of each
model at level l − 1 requires solving the lower level l − 2 models, and so on recursively
down to level 0. Consider an N + 1 agent setting in which the number of models is bounded
by M at each level. Solving an I-DID at level l requires the solutions of O((N M)l) many
models. If the models are intentional, exact solutions of the models are at least NP Complete.
This complexity precludes practical implementations of I-DIDs beyond simple problems.
The approximation technique we consider here reduces the complexity by holding a constant
number of K models in the model node. Thus, we only need to solve O((K N )l) number of
models at the first time step in comparison to O((M N )l), where M grows exponentially over
time. In general, the setting of K � M offers a substantial reduction in the computation.

As the set of K retained models differs at each time step, the approximate value function
may not converge asymptotically. We focus on bounding the error introduced by the approxi-
mation technique in the value of the optimal t-horizon policy tree for j . Here, we bound the
error introduced by the approximation technique given that lower level models are solved
exactly. While the usefulness of the bounds is limited, they are applicable to, for example,
level 1 I-DIDs when the level 0 DIDs are solved exactly.

We bound the error introduced in j’s behavior due to excluding all but K models at the
time step t . Note that the K models are assumed to be solved exactly. Recall that for some
cluster n, we retain the kn models closest to the mean. If K = M , then we retain all the models
and the error is zero. Let MK denote the set of K models and M/K denote the set of the
M − K models that are pruned. The error may be bounded by finding the model among the K
retained models whose belief is spatially the closest to that of the discarded one. Define dK as
the largest of the distances between a pruned model, m j,l−1, and the closest model among the
K selected models: dK = maxm j,l−1∈M/K minm′

j,l−1∈MK
||b j,l−1 − b′

j,l−1||1, where b j,l−1

and b′
j,l−1 are the beliefs in m j,l−1 and m′

j,l−1, respectively. Given dK , the derivation of the
error bound for j proceeds in a manner analogous to that for point-based value iteration [27],
though over the finite horizon, T , of the I-DID, as we show below.

Let b j,l−1 be the discarded nested belief of j where the worst error is made: b j,l−1 =
argmax

b j,l−1∈B j,l−1

|b j,l−1 · α−b j,l−1 · α′|. Here, B j,l−1 is the space of level l −1 beliefs of j, α is the

value function associated with the policy tree optimal at b j,l−1 and α′ is the value function
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associated with the policy tree optimal at a belief, b′
j,l−1, of a retained model that is closest

to b j,l−1. Then,

εK = |b j,l−1 · α − b j,l−1 · α′|
= |(b j,l−1 · α − b j,l−1 · α′) + (b′

j,l−1 · α − b′
j,l−1 · α)| (add zero)

≤ |(b j,l−1 · α − b j,l−1 · α′) + (b′
j,l−1 · α′ − b′

j,l−1 · α)| (b′
j,l−1 · α′ ≥ b′

j,l−1 · α)

≤ ||α − α′||∞ · ||b j,l−1 − b′
j,l−1||1 (Hölder inequality)

≤ (Rmax
j − Rmin

j )T × dK (5)

The error bound in Eq. 5 does not bound the error in agent i’s exact policy due to the
approximation—this depends on the expected behavior of j and not on the value of j’s policy.
It measures the worst-case error in j’s policy introduced by the approximation technique at
some nesting level l. The equation also assumes that the I-DIDs at the lower levels have
been solved exactly. However, as we mentioned previously, we may use the approximations
recursively at all levels of nesting to approximately solve the I-DIDs. In this case, the bounds
shown here may be tighter than desired.

8 Empirical results

We implemented the approximation algorithm in Fig. 24 and demonstrate the empirical
performance of the model clustering approach on two problem domains: the multiagent tiger
problem (tiger’s location resets if a door is opened) and a multiagent version of the machine
maintenance problem [34], both of which are described in the Appendix. In particular, we
show that the quality of the policies generated using our method approaches that of the
exact policy as K increases. As there are infinitely many computable models, we obtain the
exact policy by exactly solving the I-DID given a finite set of M0 models of the other agent
initially. In addition, we obtain significant computational savings, in comparison with the
exact method, from using the approximation techniques as indicated by the low run times.

8.1 Performance profiles

We begin our empirical analysis by reporting the performance of the model clustering based
approximate solutions of I-DIDs. In Figs. 26 and 27, we show agent i’s average rewards
gathered by executing 3 and 4 horizons policies obtained from solving the level 1 I-DIDs
approximately. Each data point here is the average of 50 runs where the true model of the
other agent, j , is randomly picked according to i’s belief distribution over j’s models. Each
curve within a plot is for a particular M0, where M0 denotes the total number of candidate
models of j at the first time step. Note that this increases exponentially over time.

We observe from the line plots in Figs. 26 and 27 that as we increase the number of models
retained, K , the policies improve and converge toward the exact. This remains true for increa-
sing M0 and for both, the multiagent tiger and machine maintenance problem domains.

8.2 Runtime comparison

We show the run times of the exact and approximate approaches (denoted as MC) in Table 5
which are indicative of the computational savings incurred by pruning the model space to a
fixed number of models at each time step in the I-DID. We observe that the approximation
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Fig. 26 Performance of the
model clustering approach in
comparison to the exact solutions
on the multiagent tiger problem
(standard deviation shown as
vertical lines). As we increase K ,
the approximate solutions
converge toward the exact. We do
not show the exact solutions for
larger values of M0 as they could
not be computed
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technique demonstrates significant speedup in comparison to the exact solutions. Note that
the speedups increase with the number of horizons. This is because the number of candidate
models of the other agent increases exponentially with time for the exact approach but remains
fixed in the approximation technique. Using the approximation we were able to solve our
I-DIDs up to 8 horizons, while the exact solutions could not be obtained beyond 4 horizons.
We expect similar results for deeper levels of strategic nesting of the models.

9 Conclusion

We showed how the traditional DIDs may be extended to I-DIDs that enable sequential
decision making in uncertain multiagent settings. Our graphical representation of I-DIDs
improves on the previous work significantly by being transparent, semantically clear, and
capable of being solved using standard algorithms that target DIDs. I-DIDs extend NIDs to
allow sequential decision making over multiple time steps in the presence of other interacting
agents. I-DIDs may be seen as concise representations for I-POMDPs providing a graphical
language to exploit problem structure and carry out decision making as the agent acts and
observes given its prior beliefs.

Because I-DIDs include models of other agents in the representation as well, solving them
is computationally complex. We presented the first technique for obtaining approximate solu-
tions to I-DIDs which selects a constant number of representative models at each time step.
Our approach was to reformulate the well-known k-means clustering method in the context
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Fig. 27 Performance of the
model clustering approach in
comparison to the exact solutions
on the machine maintenance
problem (standard deviations
shown as vertical lines). Note that
the two horizontal lines for exact
solutions in the top figure are too
close to be distinguished. As
before, the approximate solutions
converge toward the exact as we
increase K
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Table 5 Run times for exactly and approximately solving the I-DID for different steps

Problem Method Horizons

t = 2 t = 3 t = 4 t = 5

Multiagent Exact 14.079s 33.142s 83.644s *
Tiger MC 4.532s 7.110s 10.512s 12.328s
Multiagent Exact 14.234s 35.847s 99.236s *
Machine maintenance MC 8.500s 12.908s 18.688s 33.219s

K and M are equal to 50 and 100 respectively for both approximate and exact approaches (Pentium 4, 3.0GHz,
1GB RAM, WinXP). * Exact solutions ran out of memory

of I-DIDs by strategically initializing the means and obtaining stable clusters of models in an
iterative manner. Each cluster consists of models that are likely to be behaviorally equivalent.
We select a subset of models from each cluster and update the selected models over time.
The technique significantly mitigates the impact of the curse of dimensionality and reduces
the space of agents’ models in the expansion phase without significantly compromising on the
solutions of I-DIDs. We provided empirical performances on the well-known multiagent tiger
and a multiagent version of the classical machine maintenance problems. They show that the
approach saves on computations over the model space.

As spaces of candidate models are often bounded, the true model of the other agent may
not be within the model space. In this context, techniques for identifying models that are
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relevant in predicting the true behavior are needed. We are investigating ways of identifying
these relevant models using information-theoretic measures of similarity between observed
and predicted behaviors.
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Appendices

A Multiagent tiger problem

Our multiagent tiger problem is a generalization of the well-known single agent tiger problem
[19] to the multiagent setting. It differs from other multiagent versions of the same problem
[24] by assuming that the agents hear creaks as well as the growls. Creaks are indicative of
which door was opened by the other agent(s). For the sake of simplicity, we restrict ourselves
to a two-agent setting, but the problem is extensible to more agents in a straightforward way.

In the two-agent tiger problem, each agent may open doors or listen. To make the interac-
tion more interesting, in addition to the usual observation of growls, we added an observation
of door creaks, which depends on the action executed by the other agent. Creak right (CR)
is likely due to the other agent having opened the right door, and similarly for creak left
(CL). Silence (S) is a good indication that the other agent did not open doors and listened
instead. We assume that the accuracy of creaks is 90%, while the accuracy of growls is 85%
as in the single agent problem. We consider two settings, one in which the tiger persists in
its original location with a probability of 0.95 if any of the agents opened any doors in the
current step, the other in which the tiger location is chosen randomly in the next time step if
a door is opened. We also assume that the agent’s payoffs are analogous to the single agent
version. Note that the result of this assumption is that the other agent’s actions do not impact
the original agent’s payoffs directly, but rather indirectly by resulting in states that matter to
the original agent.

We showed the nested I-DID unrolled over two time steps for the multiagent tiger pro-
blem in Fig. 10. Agent i at level 1 considers M models of agent j of level 0 which, for
example, differ in the distributions over the chance node Tiger Location. In agent i’s I-DID,
we assign the marginal distribution over the tiger’s location to the CPD of the chance node
T iger Locationt

i . In the next time step, the CPD of the chance node T iger Locationt+1
i

conditioned on T iger Locationt
i , At

i , and At
j is the transition function, shown in Table 6.

We show the CPD of the observation node, Growl&Creakt+1
i , in Table 7. The CPDs of

the observation nodes in level 0 DIDs are identical to the observation function in the single
agent tiger problem.

The decision node At
i includes possible actions of agent i in the scenario such as lis-

tening (L), opening the left door (OL), and opening the right door (OR). The utility node
Ri in the level 1 I-DID relies on both agent’s actions, At

i and At
j , and the physical states,

T iger Locationt
i . We show the utility table in Table 8. The utility tables for level 0 models

are identical to the reward function in the single agent tiger problem which assigns a reward
of 10 if the correct door is opened, a penalty of 100 if the opened door is the one behind
which is a tiger, and a penalty of 1 for listening.
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Table 6 CPD of the chance node
TigerLocationt+1

i in the I-DID of
Fig. 10 when the tiger (a) likely
persists in its original location on
opening doors, and (b) randomly
appears behind any door on
opening one

〈at
i , at

j 〉 TigerLocationt
i TL TR

(a)
〈OL, ∗〉 TL 0.95 0.05
〈OL, ∗〉 TR 0.05 0.95
〈OR, ∗〉 TL 0.95 0.05
〈OR, ∗〉 TR 0.05 0.95
〈∗, OL〉 TL 0.95 0.05
〈∗, OL〉 TR 0.05 0.95
〈∗, OR〉 TL 0.95 0.05
〈∗, OR〉 TR 0.05 0.95
〈L , L〉 TL 1.0 0
〈L , L〉 TR 0 1.0

(b)
〈OL, ∗〉 * 0.5 0.5
〈OR, ∗〉 * 0.5 0.5
〈∗, OL〉 * 0.5 0.5
〈∗, OR〉 * 0.5 0.5
〈L , L〉 TL 1.0 0
〈L , L〉 TR 0 1.0

Table 7 The CPD of the chance node Growl&Creakt+1
i in the level 1 I-DID

〈at
i , at

j 〉 TgrLoct+1
i 〈GL, CL〉 〈GL, CR〉 〈GL, S〉 〈GR, CL〉 〈GR, CR〉 〈GR, S〉

〈L , L〉 TL 0.85 * 0.05 0.85 * 0.05 0.85 * 0.9 0.15 * 0.05 0.15 * 0.05 0.15 * 0.9
〈L , L〉 TR 0.15 * 0.05 0.15 * 0.05 0.15 * 0.9 0.85 * 0.05 0.85 * 0.05 0.85 * 0.9
〈L , O L〉 TL 0.85 * 0.9 0.85 * 0.05 0.85 * 0.05 0.15 * 0.9 0.15 * 0.05 0.15 * 0.05
〈L , O L〉 TR 0.15 * 0.9 0.15 * 0.05 0.15 * 0.05 0.85 * 0.9 0.85 * 0.05 0.85 * 0.05
〈L , OR〉 TL 0.85 * 0.05 0.85 * 0.9 0.85 * 0.05 0.15 * 0.05 0.15 * 0.9 0.15 * 0.05
〈L , O R〉 TR 0.15 * 0.05 0.15 * 0.9 0.15 * 0.05 0.85 * 0.05 0.85 * 0.9 0.85 * 0.05
〈O L , ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6
〈O R, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

Table 8 Reward functions of
agents i and j for the multiagent
tiger problem

〈at
i , at

j 〉 TL TR

〈OR, OR〉 10 −100
〈OL, OL〉 −100 10
〈OR, OL〉 10 −100
〈OL, OR〉 −100 10
〈L , L〉 −1 −1
〈L , OR〉 −1 −1
〈OR, L〉 10 −100
〈L , OL〉 −1 −1
〈OL, L〉 −100 10

Finally, the CPD of the chance node Mod[Mt+1
j ] in the model node, Mt+1

j,l−1, reflects which
prior model, action and observation of j results in a model contained in the model node.

B Multiagent machine maintenance problem

We extend the traditional single agent based machine maintenance (MM) problem [34] to
a two-agent cooperative version. The original MM problem involved a machine containing
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Fig. 28 Level 1 I-DID of agent i for the multiagent MM problem. The hexagonal model node contains M
level 0 DIDs (or IDs at horizon 1) of agent j

Table 9 The CPD of the chance node, Machine Failuret+1
i , in the level 1 I-DID of agent i

〈at
i , at

j 〉 Mch Failt+1
i 0-fail 1-fail 2-fail

〈M/E,M/E〉 0-fail 0.81 0.18 0.01
〈M/E,M/E〉 1-fail 0.0 0.9 0.1
〈M/E,M/E〉 2-fail 0.0 0.0 1.0
〈M,I/R〉 0-fail 1.0 0.0 0.0
〈M,I/R〉 1-fail 0.95 0.05 0.0
〈M,I/R〉 2-fail 0.95 0.0 0.05
〈E,I/R〉 0-fail 1.0 0.0 0.0
〈E,I/R〉 1-fail 0.95 0.05 0.0
〈E,I/R〉 2-fail 0.95 0.0 0.05
〈I/R,*〉 0-fail 1.0 0.0 0.0
〈I/R,*〉 1-fail 0.95 0.05 0.0
〈I/R,*〉 2-fail 0.95 0.0 0.05

two internal components operated by a single agent. Either one or both components of the
machine may fail spontaneously after each production cycle (0-fail: no component fails;
1-fail: 1 component fails; 2-fail: 2 components fail). If an internal component has failed,
then there is some chance that when operating upon the product, it will cause the product
to be defective. An agent may choose to manufacture the product (M) without examining
it, examine the product (E), inspect the machine (I), or repair it (R) before the next produc-
tion cycle. On an examination of the product, the subject may find it to be defective. Of
course, if more components have failed, then the probability that the product is defective is
greater.

We design a level 1 I-DID for the multiagent MM problem in Fig. 28. We consider M
models of agent j at level 0 which differ in the probability that j assigns to the chance node
Machine Failure j . In the I-DID, the chance node, Machine Failuret+1

i , has incident arcs from
the nodes Machine Failuret

i , At
i , and At

j . The CPD of the chance node is shown in Table 9.
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Table 10 The CPD of the chance node, Defectivet+1
i

〈at
i , at

j 〉 Mch failt+1
i Not-defective Defective

〈M,M/E〉 * 0.5 0.5
〈M,I/R〉 * 0.95 0.05
〈E,M/E〉 0-fail 0.75 0.25
〈E,M/E〉 1-fail 0.5 0.5
〈E,M/E〉 2-fail 0.25 0.75
〈E,I/R〉 * 0.95 0.05
〈I/R,*〉 * 0.95 0.05

Table 11 Reward function for agent i .

〈at
i , at

j 〉 0-fail 1-fail 2-fail

〈M,M〉 1.805 0.95 0.5
〈M,E〉 1.555 0.7 0.25
〈M,I〉 0.4025 −1.025 −2.25
〈M,R〉 −1.0975 −1.525 −1.75
〈E,M〉 1.5555 0.7 0.25
〈E,E〉 1.305 0.45 0.0
〈E,I〉 0.1525 −1.275 −2.5
〈E,R〉 −1.3475 −1.775 −2.0
〈I,M〉 0.4025 −1.025 −2.25
〈I,E〉 0.1525 −1.275 −2.5
〈I,I〉 −1.0 −3.00 −5.00
〈I,R〉 −2.5 −3.5 −4.5
〈R,M〉 −1.0975 −1.525 −1.75
〈R,E〉 −1.3475 −1.775 −2.0
〈R,I〉 −2.5 −3.5 −4.5
〈R,R〉 −4 −4 −4

The reward function for a level 0 agent is identical to the one in the classical MM problem

For the observation chance node, Defectivet+1
i , we associate the CPD shown in Table 10.

Note that arcs from Machine Failuret+1
i and the nodes, At

i and At
j , in the previous time step

are incident to this node. The observation nodes in the level 0 DIDs have CPDs that are
identical to the observation function in the original MM problem.

The decision node, Ai , consists of agent i’s actions including manufacture (M), examine
(E), inspect (I), and repair (R). It has one information arc from the observation node Defectivet

i
indicating that i knows the examination results before making the choice. The utility node
Ri is associated with the utility table in Table 11.

The CPD of the chance node, Mod[Mt+1
j ], in the model node, Mt+1

j,l−1, reflects which prior
model, action and observation of j results in a model contained in the model node.
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