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Abstract

Modeling the perceived behaviors of other agents improves the performance of an
agent in multiagent interactions. We utilize the language of interactive influence dia-
grams to model repeated interactions between the agents, and ascribe procedural models
to other agents. Procedural models offer the benefit of understanding how others arrive
at their behaviors. As model spaces are often bounded, the true models of others may not
be present in the model space. In addition to considering thecase when the true model
is within the model space, we investigate the case when the true model may fall outside
the space. We then seek to identify models that are relevant to the observed behaviors
of others and show how the agent may learn to identify these models. We evaluate the
performance of our methods in two repeated games and provideexperimental results in
support.

1 Introduction

Modeling other agents cohabiting the environment is an important topic of research in mul-
tiagent systems. Accurate behavioral models of others facilitate optimal decision-making in
multiagent settings. Consequently, agent modeling finds significant applications in several
areas such as robotics, interactive software and games. Because the true models of others
are often private, especially in non-cooperative settings, we may discover them only by ob-
serving the actions of the other agents. However, as the space of possible models is very
large, we typically restrict the models to those that can be represented using amodeling lan-
guage. Thus, the problem of discovery is transformed into the moremanageable problem
of identificationof the true model from the space of models represented using the modeling
language.
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Therefore, two issues are of importance when modeling otheragents. First, is the se-
lection of the modeling language. A large amount of previouswork focuses on identifying
directly the strategies (or agent functions) of the other agents. For example, Carmel and
Markovitch [3], use finite state automatons to model agents’strategies. Sahaet al. [12] use
Chebychev polynomials to approximate agents’ decision functions in negotiations. The sec-
ond issue is the learning method used to gradually identify the agents’ true models. Existing
approaches include Bayesian learning [15], learning finitestate automata [3] and polynomial
approximation [12].

While knowledge of the behavioral strategies of others is indeed what is needed, it is also
important to understand how others arrived at their behaviors. Besides providing intuitive
reasons for the strategies, theproceduralknowledge may help preclude certain strategies of
others, deeming them impossible because of the structure ofthe environment. In the context
of learning models of others, our focus in this paper is on identifying the likely model(s)
from a set using Bayesian learning. While there are uncountably infinite numbers of agent
functions, there are only countable computable models. Hence current modeling languages
such as finite automata necessarily restrict the model spacewith the implicit assumption that
the true model is contained or approximable in this space. Inthe absence of this assumption,
Bayesian learning is not guaranteed to converge and in fact,may become undefined.

In this paper, we utilize the language ofinteractive influence diagrams(I-IDs) [5] to
model interactions between agents. We ascribe procedural models to the other agents – the
models may be IDs, Bayesian networks (BN) [11], or I-IDs themselves leading to recursive
modeling. We use the I-IDs to model repeated games, though asmentioned in [5], they
are applicable to sequential games as well. Given the assumption that the true model of
the other agent lies within the set of models that we consider, standard Bayesian learning is
sufficient to update the likelihood of each candidate model (also called model weight) given
the observation histories of others’ actions.

Perhaps, a more realistic case is when we are uncertain that the true model is indeed
within the bounded model space. For this case, we present a technique that identifies a
model or a weighted combination of models whose predictionsarerelevantto the observed
action history. Using previous observations of others’ actions and predictions of the can-
didate models, we learn how the predictions may be related tothe observation history. In
other words, we learn toclassifythe predictions of the candidate models using the previous
observation history as the training set. Thus, we seek the hidden function that may possibly
relate the candidate models to the true model.

We then update the likelihoods of the candidate models. As a Bayesian update may be
inadequate, we utilize the similarity between the predictions of a candidate model and the
observed actions as the likelihood of the model. In this context, we measure themutual infor-
mationof the predicted actions by a candidate model and the observed action. This provides
a natural measure of the dependence between the candidate and true models, possibly due
to some shared behavioral aspects. We show that under certain conditions, our approach is
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guaranteed to converge. We empirically evaluate the performance of our approach on mul-
tiple problem domains and demonstrate that an agent utilizing the approach gathers larger
rewards on average as it better predicts the actions of the other agent.

2 Related Work

The benefits of utilizing graphical models for representingagent interactions have been rec-
ognized previously. Suryadi and Gmytrasiewicz [15] used IDs to model other agents and
Bayesian learning to update the distributions over the models based on observed behavior.
Additionally, they also consider the case where none of the candidate models reflect the ob-
served behavior. In this situation, Suryadi and Gmytrasiewicz show how certain aspects of
the IDs may be altered to better reflect the observed behavior. In comparison, we seek to find
the underlying dependencies that often exist between candidate models and the true model.
More recently, MAIDs [8] and NIDs [7] extend IDs to multiagent settings. MAIDs objec-
tively analyze the game, efficiently computing the Nash equilibrium profile by exploiting the
independence structure. NIDs extend MAIDs to include agents’ uncertainty over the game
being played and over models of the other agents. MAIDs provide an analysis of the game
from an external viewpoint and the applicability of both is limited to single play in static
games. Although I-IDs are similar to NIDs, their dynamic extensions, I-DIDs [5], model
interactions that are extended over time.

Our work also contributes to the currrent work on opponent modeling besides the men-
tioned work in Section 1. In [1, 14], extensions of the minimax algorithm to incorporate
different opponent strategies (rather than just being rational) are provided. However, this
line of work focuses on improving the applicability of the minimax algorithm and uses agent
functions as models. It assumes that the true model of the opponent is within the set of
candidate models. As mentioned previously, Saha et al. [12]ascribe orthogonal Chebychev
polynomials as agent functions. They provide an algorithm to learn the coefficients of the
polynomials using the observation history. However, both the degree and the number of
polynomials is fixed a’priori thereby bounding the model space.

3 Background: Interactive Influence Diagrams

We briefly describe interactive influence diagrams (I-IDs) [5] for modeling two-agent inter-
actions and illustrate their application using a simple example.

3.1 Syntax and Solution

In addition to the usual chance, decision, and utility nodes, I-IDs include a new type of
node called themodelnode (hexagon in Fig. 1(a)). The probability distribution over the
model node represents an agent, sayi’s, belief over the candidate models of the other agent.
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In addition to the model node, I-IDs differ from IDs by havinga chance node,Aj , that
represents the distribution over the other agent’s actions, and a dashed link, called apolicy
link.
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Figure 1:(a) A generic I-ID for agenti situated with one other agentj. The hexagon is the model
node whose structure we show in(b). Members of the model node may be IDs,BNs or I-IDs them-
selves (m1

j ,m
2
j ); not shown here for simplicity) whose decision nodes are mapped to the correspond-

ing chance nodes (A1
j , A2

j ). Depending on the value of node,Mod[Mj ], distribution of the chance
node is assigned toAj with some probability.

The model nodeMj,l−1 contains as its values the alternative computational models as-
cribed byi to the other agentj in a lower levell − 1. Formally, we denote a model of
j asmj,l−1 which resides in a lower level within an I-ID. A model in the model node, for
example, may itself be an I-ID, in which case the recursion terminates when a model is an
ID or a Bayesian network (BN). We observe that the model node and the dashed policy link
that connects it to the chance node,Aj, could be represented as shown in Fig. 1(b). Once
an I-ID or ID of j is solved and the optimal decisions are determined, the decision node is
transformed into a chance node1. The chance node has the decision alternatives as possible
states and is given a probability distribution to the states. Specifically, ifOPT is the set of
optimal actions obtained by solving the I-ID (or ID) likem1

j,l−1, thenPr(aj ∈ A1
j) = 1

|OPT |

if aj ∈ OPT , 0 otherwise. The different chance nodes (A1
j , A

2
j ), one for each model, and

additionally, the chance node labeledMod[Mj ] form the parents of the chance node,Aj .
The states ofMod[Mj ] denote the different models ofj. The distribution overMod[Mj ] is
i’s belief overj’s candidate models (model weight) given the physical stateS. The condi-
tional distribution of the chance node,Aj , is amultiplexerthat assumes the distribution of
each of the action nodes (A1

j , A
2
j ) depending on the state ofMod[Mj ]. In other words, when

Mod[Mj ] has the statem1
j , the chance nodeAj assumes the distribution of the nodeA1

j , and
Aj assumes the distribution ofA2

j whenMod[Mj ] has the statem2
j .

Solution of an I-ID proceeds in a bottom-up manner, and is implemented recursively. We
start by solving the lower level models, which are traditional IDs or BNs. Their solutions

1If j’s models are BNs a chance node representingj’s decisions will be directly mapped into a chance node
in the model node
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provide probability distributions over the other agents’ actions, which are entered in the
corresponding chance nodes found in the model node of the I-ID. Given the distributions over
the actions within the different chance nodes (one for each model of the other agent), the I-ID
is transformed into a traditional ID. During the transformation, the conditional distribution of
the node,Aj , is populated such that the node assumes the distribution ofeach of the chance
nodes depending on the state of the node,Mod[Mj ]. The transformed I-ID is a traditional
ID that may be solved using the standard expected utility maximization method [13].

3.2 Illustration

We illustrate I-IDs using an example application to the public good (PG) game with punish-
ment (Table 1) explained in detail in [6]. Two agents,i andj, must either contribute some
resource to a public pot or keep it for themselves. To make thegame more interesting, we
allow agents to contribute the full (FC) or partial (PC) portion of their resources though
they could defect without making any contribution (D). The value of resources in the public
pot is shared by the agents regardless of their action and is discounted byci for each agent
i, whereci ∈ (0, 1) is the marginal private return. As defection is a dominatingaction, we
introduce a punishmentP to penalize the defecting agents and to promote contribution. In
addition, a non-zero costcp of punishing is incurred by the contributing agents. For simplic-
ity, we assume each agent has the same valueXT of private resources and makes a partial
contribution of1

2
XT .

i, j FC PC D
FC 2ciXT , 3

2
XT ci −

1

2
cp, ciXT − cp,

2cjXT
1

2
XT + 3

2
XT cj −

1

2
P XT + cjXT − P

PC 1

2
XT + 3

2
XT ci −

1

2
P , 1

2
XT + ciXT , 1

2
XT + 1

2
ciXT − 1

2
P ,

3

2
XT cj −

1

2
cp

1

2
XT + cjXT XT + 1

2
cjXT − P

D XT + ciXT − P , XT + 1

2
ciXT − P , XT ,

cjXT − cp
1

2
XT + 1

2
cjXT − 1

2
P XT

Table 1:PG game with punishment. Based on punishment,P , and marginal return,ci, agents may
choose to contribute than defect.

We let agentsi andj play the PG game repeatedly a finite number of times and aim for
larger average rewards. After a round, each agent observes the simultaneous action of its
opponent. Except for the observation of their actions, no additional information is shared
between the agents.

As discovered in field experiments with humans [2], different types of agents play the
PG differently. To act rationally,i ascribes candidate behavioral models toj. We assume the
models are procedural taking the form of IDs and BNs.

For illustration, let agenti consider four models ofj (m1
j , m2

j , m3
j , andm4

j ) in the model
node at timet, as shown in Fig. 2. The first two model,m1

j andm2
j , are simple IDs where
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Figure 2:Example I-ID for the repeated PG game with four models ascribed toj. The dotted lines represent

the mapping between decision (chance) nodes inj’s models and chance nodes in the model node.

the chance nodeAi,〈1,··· ,t−1〉 represents the frequencies of the different actions of agent i

in the game history (from1 to time t − 1). However, the two IDs have different reward
functions in the value node. The modelm1

j has a typically low marginal private return,cj,
and represents a reciprocal agent who contributes only whenit expects the other agent to
contribute as well. The modelm2

j has a highcj and represents an altruistic agent who prefers
to contribute during the play. The third model,m3

j , is a BN representing thatj’s behavior
relies on its own action in the previous time step (Aj,t−1) and i’s previous action (Ai,t−1).
m4

j represents a more sophisticated decision process. Agentj considers not only its own and
i’s actions at timet − 1 (chance nodesAi,t−1 andAj,t−1), but also agenti’s actions at time
t − 2 (Ai,t−2). It indicates thatj relies greatly on the history of the interaction to choose its
actions at timet. We point out that these four models reflect typical behaviors of humans in
the field experiments.

The weights of the four models are the probability distribution over the values of the
chance node,Mod[Mj ]. As agenti is unaware of the true model ofj, it may begin by
assigning a uniform distribution toMod[Mj ]. Over time, this distribution is updated to
reflect any information thati may have aboutj’s model.

4 Model Identification in I-IDs

As we mentioned previously, agenti hypothesizes a limited number of candidate models of
its opponentj, Mj = {m1

j ,. . .,m
p
j , . . .,mn

j }, and intends to ascertain the true model,m∗
j , of

j in the course of interaction. On observingj’s action, where the observation in roundt is
denoted byot

i, i may update the likelihoods (weights) of the candidate models in the model
node of the I-ID. Gradually, the model that emerges as most likely may be hypothesized to
be the true model ofj.
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However, because the space of candidate models is often bounded2, the true model of
j may not be within the model space. For this case, we may intuitively expect to identify
a model or a weighted combination of models within the model space whose predictions
arerelevantin determining those of the true model. Consequently, the model identification
problem in this case involves finding the weights of the models in the model space and
updating the weights using the observations. We begin by exploring the traditional setting
where the true model,m∗

j is in the model space,Mj , and move on to the challenge where the
true model is outside the model space.

4.1 Case 1:m∗
j ∈ Mj (Traditional)

Let o1:t−1
i be the history of agenti’s observations up to timet − 1. Agenti’s belief over the

models ofj at time stept−1 may be written as,Pr(Mj|o
1:t−1
i )

def
= 〈 Pr(m1

j), Pr(m2
j),. . .,Pr(m∗

j),. . .,
Pr(mn

j ) 〉. If ot
i is the observation at timet, agenti may update its belief on receiving the

observation using a straightforward Bayesian process. We show the update of the belief for
some model,mn

j , in Eq. 1.

Pr(mn
j |o

t
i) =

Pr(ot
i|m

n
j )Pr(mn

j |o1:t−1)
∑

mj∈Mj
Pr(ot

i|mj)Pr(mj)
(1)

Here,Pr(ot
i|m

n
j ) is the probability ofj performing its observed action given that its model

is mn
j . This may be obtained from the chance nodeAn

j in the I-ID of i.
Eq. 1 provides a way for updating the weights of models contained in the model node,

Mj , given the observation history. In the context of the I-ID, agenti’s belief over the other’s
models updated using the process outlined in Eq. 1 will converge in the limit. Formally,

Proposition 1 (Bayesian Learning in I-IDs) If an agent’s prior belief assigns a non-zero
probability to the true model of the other agent, its posterior beliefs updated using Bayesian
learning will converge with probability 1.

Proof of Proposition 1 relies on showing that the sequence ofthe agent’s beliefs updated
using Bayesian learning is known to be a Martingale [4]. Proposition 1 then follows from a
straightforward application of the Martingale convergence theorem (§4 of Chapter 7 in [4]).

The above result does not imply that an agent’s belief alwaysconverges to the true model
of the other agent. This is due to the possible presence of models of the other agent that
areobservationally equivalentto the true model. For example, all models ofj that induce
identical distributions over all possible future observation paths are said to be observationally
equivalent for agenti. When a particular observation history obtains, agenti is unable to dis-
tinguish between the observationally equivalent models ofj. In other words, observationally
equivalent models generate distinct behaviors for histories which are never observed.

2Saha et al. [12] bound the space of agent functions to those that can be modeled using finite degree Cheby-
chev polynomials and settle for a best fit.
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4.2 Case 2:m∗
j 6∈ Mj

For computability purposes, the space of candidate models ascribed toj is often bounded. In
the absence of prior knowledge,i may be unaware whetherj’s true model,m∗

j , is within the
model space. Ifm∗

j 6∈ Mj and in the absence of observationally equivalent models, Bayesian
learning may be inadequate. For this case, we naturally expect to find a candidate model or
a combination of models from the space whose predictions arerelevantin determining those
of the true model.

4.2.1 Relevant Models and Mutual Information

As the true model may lie outside the model space, our objective is to identify candidate
models whose predictions exhibit a mutual pattern with the observed actions of the other
agent. We interpret the existence of a mutual pattern as evidence that the candidate model
shares some behavioral aspects of the true model. In order todo this, we introduce a notion
of relevancebetween a model inMj and the true model,m∗

j . Leta∗
j be the observed action of

the other agentj andā∗
j denote any other action from its set of actions. DefinePr(a1

j |m
n
j , a∗

j)
as the probability that a candidate model ofj, mn

j , predicts actiona1
j given thata∗

j is observed.

Definition 1 (Relevant Model) If for a model,mn
j , there exists an action,a1

j such that,
Pr(a1

j |m
n
j , a∗

j) ≥ Pr(a1
j |m

n
j , ā∗

j), wherea1
j ∈ OPT (mn

j ), thenmn
j is a relevantmodel.

In predictinga1
j , modelmn

j may utilize the past observation history. Definition 1 formalizes
the intuition that a relevant model predicts an action that is likely to correlate with a particular
observed action of the other agent. We note that the above definition generalizes to a relevant
combination of models in a straightforward way. Given Definition 1, we need an approach
that assigns large probabilities to the relevant model(s) in the nodeMod[Mj ] over time. We
proceed to show one way of computing these probabilities.

We begin by observing that the chance nodes,Mod[Mj ], Aj and the mapped chance
nodes,A1

j , A
2
j , . . ., form a BN, as shown in Fig. 3(a). We seek the weights of models in

Mod[Mj ] that would allow the distribution overAj to resemble that of the observed actions.
Subsequently, we may map the problem to one of classifying the predicted actions of the
individual models to the observed action ofj, and using the classification function for de-
riving the model weights. Because the candidate models are independent of each other, the
BN is naiveand the classification reduces to learning the parameters (conditional probability
distributions) of the naive BN using say, the maximum likelihood approach with Dirichlet
priors. For multiple agents, the models may exhibit dependencies in which case we learn a
general BN. We show the equivalent naive BN in Fig. 3(b).

As relevant models hint at possible dependencies with the true model, we utilize the
mutual information(MI) between the chance nodesAj and say,An

j , as a measure of the
likelihood of the model,mn

j , in Mod[Mj ]. MI is a well-known way of quantifying the
mutual dependency between two random variables.
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Figure 3: (a) The BN in the I-ID of agenti; (b) The equivalent naive BN that we use for classifying the

outcomes of the candidate models to the observation history; (c) Example of the training set used for learning

the naive BN for PG. The actions in columnAj are observations ofi, while remaining columns are obtained

from models.

Definition 2 (Mutual Information) The mutual information (MI) of the true model,m∗
j and

a candidate model,mn
j , is computed as:

MI(mn
j , m∗

j)
def
= Pr(An

j , Aj)log[
Pr(An

j ,Aj)

Pr(An
j
)Pr(Aj)

]

= Pr(An
j |Aj)Pr(Aj)log[

Pr(An
j |Aj)

Pr(An
j
)

]
(2)

Here,An
j is the chance node mapped from the model,mn

j andAj assumes the distribution of
the observed actions generated by the true model,m∗

j .

Notice that MI is non-negative. The termsPr(An
j |Aj), Pr(An

j ) andPr(Aj) may be
calculated from the conditional probability distributions of the naive BN. Here, the observed
history of j’s actions together with the predictions of the models over time may serve as
the training set for learning the parameters of the naive BN.We show an example training
set for PG in Fig. 3(c). Values of the columns,A1

j , A2
j , . . ., An

j are obtained by solving
the corresponding models and sampling the resulting distributions if needed. We utilize the
normalized MI at each time step as the model weights in the chance node,Mod[Mj ].

4.2.2 Theoretical Results

Obviously, modelmn
j is irrelevant ifPr(aj|m

n
j , a∗

j) = Pr(aj|m
n
j , ā∗

j ) for eachaj ∈ OPT (mn
j ).

Then, the following proposition is trivially obtained.

Proposition 2 If mn
j is irrelevant,MI(mn

j , m∗
j ) = 0.

Proposition 2 implies that relevant models are assigned a higher MI than irrelevant ones.
To enable further analysis, we compare the relevance of a candidate model with that of
another.
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Definition 3 (Relevance Ordering) Leta∗
j be some observed action of the other agentj. If

for two relevant models,mn
j andm

p
j , there exists an action,a1

j , such thatPr(a1
j |m

n
j , a∗

j ) ≥
Pr(a1

j |m
p
j , a

∗
j ) and Pr(a1

j |m
n
j , ā∗

j ) ≤ Pr(a1
j |m

p
j , ā

∗
j), wherea1

j ∈ OPT (mn
j ) , OPT (mp

j)
and ā∗

j denotes all other actions of the true model, thenmn
j is a more relevantmodel than

m
p
j .

Given Definition 3, we may show that models that are more relevant are assigned a
higher MI. Proposition 3 formalizes this observation (we donot show the proof due to space
constraints).

Proposition 3 If mn
j is a more relevant model thanmp

j as per Definition 3 andm∗
j is the true

model, thenMI (mn
j , m∗

j) ≥ MI (mp
j , m

∗
j).

For the sake of completeness, we show that if the true model,m∗
j , is contained in the

model space, our approach analogous to Bayesian learning will converge.

Proposition 4 (Convergence)Given that the true modelm∗
j ∈ Mj and is assigned a non-

zero probability, the normalized distribution of mutual information of the models converges
with probability 1.

The proof is intuitive and relies on the fact that the estimated parameters of the naive Bayes
converge to the true parameters as the observation history grows (see chapter 3 of [10] for the
proof when themaximum a posterioriapproach is used for parameter estimation). Proposi-
tion 4 then follows because the termsPr(An

j , Aj), Pr(An
j ) andPr(Aj) used in calculating

the MI are obtained from the parameter estimates.
Analogous to Bayesian learning, the distribution of MI may not converge to the true

model in the presence ofMI-equivalentmodels inMj . In particular, the set of MI-equivalent
models is larger and includes observationally equivalent models. However, consider the ex-
ample wherej’s true strategy is to always selectFC, and letMj include the true model as
well as a candidate model that generates the strategy of always selectingD. Though obser-
vationally distinct, the two candidate models are assignedequal MI because of the perceived
dependency between the action of selectingD by the candidate strategy and selectingFC by
the true one.

4.2.3 Algorithm

We briefly outline the algorithm that uses MI for model identification in Fig. 4. In each
roundt, agenti receives an observation of its opponentj’s action (line 1). This observation
together with solutions from candidate models ofj (line 2), compose one sample in the
training setD (line 3; see Fig. 3(c)). The training set is used for learning the parameters of
the naive BN (line 4) and subsequently for computing the model weights in the I-ID. Given
the learned parameters, we compute the MI of each candidate model mp

j andm∗
j (line 6).
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The posterior probabilities are also used in the conditional probability distribution (CPD) of
the chance nodeAj in the I-ID (line 9). Notice that the CPD,Pr(Aj|A

p
j , m

p
j), describes the

relation between the predicted actions by candidate modelsand the observed actions. The
normalized MI is assigned as the CPD of the chance nodeMod[Mj ] in the I-ID (Lines 10-
11). This distribution represents the updated weight over the candidate models ofj. Given
the updated model weights and the populated CPDs of the chance nodeAj , we solve the I-ID
of agenti to obtain its action.

Model Weight Update
Input : I-ID of agenti, observationot

i, training setD
1. Agenti receives an observationoi,t

2. Solve the model,mp
j,t (p = 1, . . . , n) to get actions for the chance nodes

A
p
j,t (p = 1, · · · , n)

3. Add (A1

j,t,· · · , A
p
j,t, · · · , An

j,t, oi,t) as a sample into the training setD
4. Learn the parameters of thenaive BNincluding the chance nodes,

A1

j ,. . ., An
j , andAj

5. For eachA
p
j (p = 1, . . . , n) do

6. ComputeMI(mp
j , m

∗

j ) using Eq. 2
7. ObtainPr(Aj |A

p
j ) from the learnednaive BN

8. Populate CPD row of the chance nodeAj usingPr(Aj |A
p
j , m

p
j )

9. end for
10. NormalizeMI(mp

j , m
∗

j )

11. Populate CPD of the chance nodeMod[Mj ] usingMI

Figure 4:Algorithm revises the model weights in the model node,Mod[Mj ], on observingj’s action
using MI as a measure of likelihood, and populates CPDs of thechance node,Aj , by propagating the
learned naive BN.

5 Performance Evaluation

We evaluate the effectiveness of the algorithm outlined in Fig. 4 in the context of the repeated
public good game (Section 3.2) and repeated one-shot negotiations as in [12] though simpli-
fied. As we mentioned previously, if the true model falls outside the model space, Bayesian
learning (BL) may be inadequate. Therefore, in addition to using BL for comparison, we
also employ an adapted BL method (A-BL) that restarts the BL process when the likelihoods
become zero by assigning candidate models prior weights using the frequency with which
the actions are observed so far. Additionally, we also utilize the KL-Divergence (KL) to
assign the likelihood of a candidate model. Lower is the KL between the distributions over
An

j andAj, larger is the likelihood of the corresponding model,mn
j .

We let agentsi andj play 1000 rounds of each game and reporti’s average rewards. To
facilitate analysis, we also show the changing model weights across rounds that are assigned
to the relevant and true models for the two cases – Case 1:m∗

j ∈ Mj , and Case 2:m∗
j 6∈ Mj .
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5.1 Repeated Public Good Game
In the aforementioned PG game, we utilize the I-ID in Fig. 2 tomodel the interaction. Agent
i plays with the opponentj multiple rounds of PG and aims to gain more rewards in the
long run by discoveringj’s true behaviorial model. For case 1, we let the model space,
Mj , contain three models,m1

j , m3
j , andm4

j , that represent a reciprocal and two deliberative
agents, respectively. We let agentj play using the true model,m4

j . Fig. 5 (a) demonstrates
the favorable performances of MI, BL and A-BL, which quicklyconverge to the true model
and gain almost the same average rewards.

For the evaluation of case 2, agenti considers three candidate models ofj, m2
j , m3

j , and
m4

j , while j uses the modelm1
j . We observe that MI obtains the largest average rewards

over the long run in comparison to other updating methods. This is because MI finds the
deliberative model,m4

j , to be most relevant to the true model,m1
j , that represents a reciprocal

agent and acts according to the frequency ofi’s actions in the history. We note that MI does
not monotonically increase but assigns the largest weight to the most relevant model at any
point in time. Notice that bothm1

j andm4
j consider actions of the other agent, and identical

actions of the agents as promoted by a reciprocal model are more valuable. Both the A-BL
and KL methods recognize the altruistic model,m2

j , as the most likely.

(a) Case 1: m∗
j = m4

j , Mj={m1
j , m3

j , m4
j}
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(b) Case 2: m∗
j = m1

j , Mj={m2
j , m3

j , m4
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Figure 5:Performance profiles for the two cases in the repeated PG game. Notice that, for case 2,
the model weight assigned using BL drops to zero
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5.2 Repeated One-shot Negotiations
A seller agenti wants to sell an item to a buyer agentj. The buyer agent bargains with
the seller and offers a price that ranges fromLow, Mid, to High. The seller agent decides
whether toaccept the offer (A), toreject it immediately (R), or tocounter the offer (C).
If i counters the offer, it expects a new price offer from agentj. Once the negotiation is
completed successfully or fails, the agents restart a new one on a different item; otherwise,
they continue to bargain. Figure 6(a) shows the payoffs of the seller agent when interacting
with the buyer. The seller aims to profit in the bargaining process. As in most cases of
negotiations, here the seller and the buyer are unwilling toshare their preferences with the
other. For example, from the perspective of the seller, sometypes of buyer agents have
different bargaining strategies based on their risk preferences.

j, i A R C
Low -1 1 1
Mid 1 0 1

High 3 1 -1

Negi,t

Ri

Offerj,t
3

Mod[Mj]

Offerj,t

Riskj,t
3

Urgj,t
3

Negi,t-1

mj
1 mj

2 mj
3
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Riskj,t
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Negi,t-1

Offerj,t
3Offerj,t

1 Offerj,t
2

Offerj,t
4

(a) (b)

Figure 6: (a) Single shot play of a negotiation between the selleri and buyerj. The numbers
represent the payoffs of the seller.(b) I-ID for the negotiation with four models ascribed toj.

The idea of using probabilistic graphical models in multiagent negotiation was previ-
ously explored in [9]. In the same vein, we model agenti using the I-ID shown in Fig. 6(b).
Analogous to [12], we consider four types of the buyer agentj. Each of them is represented
using a BN. They differ in the probability distributions forthe chance nodesRiskthat rep-
resents the risk attitude andUrg, which represents the urgency of the situation to the agent.
Let modelm1

j represent a buyer of a risk averse type. A risk averse agent has an aversion
to losing the deal and hence always proposes a high offer. Thesecond model,m2

j , is a risk
seeking buyer that adopts a risky strategy by intending to offer a low price. Modelm3

j is a
risk neutral buyer that balances its low and high offers in the negotiation. The final model,
m4

j , is a buyer that is risk neutral but in an urgent situation is eager to acquire the item. Con-
sequently, it is prone to offering a high price. Note that thechance nodeNegi,t−1 represents
i’s previous action in the negotiation.

We let agenti consider three candidate models forj, m1
j , m2

j , andm3
j , and agentj use

the modelm1
j for case 1. Fig. 7(a) reveals that all the different updating methods correctly

identify the true model after some steps and gather similar rewards. However, KL assigns
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non-zero weights to other models as the distribution from those candidates is somewhat close
to that of the true model. Becausej is risk averse, it often offers a high price that the seller
chooses to accept thereby incurring a payoff of 3.

(a) Case 1: m∗
j = m1

j , Mj={m1
j , m2

j , m3
j}
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(b) Case 2: m∗
j = m4

j , Mj={m1
j , m2

j , m3
j}
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Figure 7:Performance profiles and the changing model weights for the two cases while repeatedly
playing the negotiation game.

In case 2, agentj plays the game using the model,m4
j , andi assumes the remaining three

models as candidates. Notice that MI eventually assigns thelargest weight (≈ 0.5) to the
risk averse agent,m1

j , that always offers a high price in the negotiation. This behavior is
consistent with the model,m4

j , that represents an urgent buyer who is also prone to offering
a high price. The remaining two candidate models are MI-equivalent. In comparison, both
KL and A-BL methods incorrectly identify the risk neutral agentm3

j , which leads to lower
average rewards.

6 Discussion

Our experimental results in multiple problem domains demonstrate that the normalized dis-
tribution of MI of the candidate models learned by classifying their predictions exhibits a
comparable performance to Bayesian learning when the true model is within the set of can-
didate models. In particular, the experiments verify that the distribution of MI converges for
this case. Perhaps more importantly, it improves on the other heuristic approaches for the
plausible case that the true model is outside the model space. Thus, our approach shows
potential as a general purpose technique for modeling otheragents when we are uncertain
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whether the model space is exhaustive. However, an important limitation to consider is a
possibly large set of MI-equivalent models.

Our use of I-IDs to model the repeated interactions between agents provides an intuitive
way to ascribe procedural models such as IDs, I-IDs and BNs toother agents. In comparison
to agent functions, these models promote an understanding of the behavior of the agent and
allow the explicit representation of domain structure and knowledge. However, these models
must be solved to obtain their predictions thereby posing computational challenges.
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