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Abstract

Modeling the perceived behaviors of other agents improveperformance of an
agent in multiagent interactions. We utilize the languafjsieractive influence dia-
grams to model repeated interactions between the agentasaribe procedural models
to other agents. Procedural models offer the benefit of staleding how others arrive
at their behaviors. As model spaces are often bounded ubertodels of others may not
be present in the model space. In addition to consideringdse when the true model
is within the model space, we investigate the case whentleentiodel may fall outside
the space. We then seek to identify models that are relegahetobserved behaviors
of others and show how the agent may learn to identify thesgelao We evaluate the
performance of our methods in two repeated games and prexjurimental results in
support.

1 Introduction

Modeling other agents cohabiting the environment is an @b topic of research in mul-
tiagent systems. Accurate behavioral models of otheritéel optimal decision-making in
multiagent settings. Consequently, agent modeling fingisifscant applications in several
areas such as robotics, interactive software and gamesuBec¢he true models of others
are often private, especially in non-cooperative settimgsmay discover them only by ob-
serving the actions of the other agents. However, as theespfggossible models is very
large, we typically restrict the models to those that candpeasented usingraodeling lan-
guage Thus, the problem of discovery is transformed into the nmoamageable problem
of identificationof the true model from the space of models represented usenmbdeling
language.



Therefore, two issues are of importance when modeling agents. First, is the se-
lection of the modeling language. A large amount of previmosk focuses on identifying
directly the strategies (or agent functions) of the otheanégy For example, Carmel and
Markovitch [3], use finite state automatons to model agesitategies. Sahet al.[12] use
Chebychev polynomials to approximate agents’ decisiontfans in negotiations. The sec-
ond issue is the learning method used to gradually idertidgyaigents’ true models. Existing
approaches include Bayesian learning [15], learning fstdée automata [3] and polynomial
approximation [12].

While knowledge of the behavioral strategies of othersdged what is needed, itis also
important to understand how others arrived at their belmaviBesides providing intuitive
reasons for the strategies, th@ceduralknowledge may help preclude certain strategies of
others, deeming them impossible because of the structuhe @nvironment. In the context
of learning models of others, our focus in this paper is omiifigng the likely model(s)
from a set using Bayesian learning. While there are unctiyntafinite numbers of agent
functions, there are only countable computable models.célenrrent modeling languages
such as finite automata necessarily restrict the model spiitéhe implicit assumption that
the true model is contained or approximable in this spacthdrabsence of this assumption,
Bayesian learning is not guaranteed to converge and inrfegt,become undefined.

In this paper, we utilize the language iofteractive influence diagram@-IDs) [5] to
model interactions between agents. We ascribe procedwdédisto the other agents — the
models may be IDs, Bayesian networks (BN) [11], or I-IDs tkehes leading to recursive
modeling. We use the I-IDs to model repeated games, thougheasioned in [5], they
are applicable to sequential games as well. Given the adsmipat the true model of
the other agent lies within the set of models that we consgdandard Bayesian learning is
sufficient to update the likelihood of each candidate moalsl(called model weight) given
the observation histories of others’ actions.

Perhaps, a more realistic case is when we are uncertainhthdatute model is indeed
within the bounded model space. For this case, we preserthaitpie that identifies a
model or a weighted combination of models whose predictavagelevantto the observed
action history. Using previous observations of othersicexst and predictions of the can-
didate models, we learn how the predictions may be relatédetmbservation history. In
other words, we learn tolassifythe predictions of the candidate models using the previous
observation history as the training set. Thus, we seek thaehi function that may possibly
relate the candidate models to the true model.

We then update the likelihoods of the candidate models. Aaye8an update may be
inadequate, we utilize the similarity between the preditdiof a candidate model and the
observed actions as the likelihood of the model. In thisexnive measure thautual infor-
mationof the predicted actions by a candidate model and the obdeteon. This provides
a natural measure of the dependence between the candidbteuarmodels, possibly due
to some shared behavioral aspects. We show that undemceatadlitions, our approach is



guaranteed to converge. We empirically evaluate the pedaoce of our approach on mul-
tiple problem domains and demonstrate that an agent uatjlitie approach gathers larger
rewards on average as it better predicts the actions of tiex agent.

2 Related Work

The benefits of utilizing graphical models for representiggnt interactions have been rec-
ognized previously. Suryadi and Gmytrasiewicz [15] used tD model other agents and
Bayesian learning to update the distributions over the risdokesed on observed behavior.
Additionally, they also consider the case where none of #melitlate models reflect the ob-
served behavior. In this situation, Suryadi and Gmytragiewhow how certain aspects of
the IDs may be altered to better reflect the observed behdmioomparison, we seek to find
the underlying dependencies that often exist between datelmodels and the true model.
More recently, MAIDs [8] and NIDs [7] extend IDs to multiagesettings. MAIDs objec-
tively analyze the game, efficiently computing the Nash ldoyuiim profile by exploiting the
independence structure. NIDs extend MAIDs to include agjentcertainty over the game
being played and over models of the other agents. MAIDs pean analysis of the game
from an external viewpoint and the applicability of bothimited to single play in static
games. Although I-IDs are similar to NIDs, their dynamicexgions, I-DIDs [5], model
interactions that are extended over time.

Our work also contributes to the currrent work on opponend@tiag besides the men-
tioned work in Section 1. In [1, 14], extensions of the mink@gorithm to incorporate
different opponent strategies (rather than just beingmat) are provided. However, this
line of work focuses on improving the applicability of themmax algorithm and uses agent
functions as models. It assumes that the true model of thergy is within the set of
candidate models. As mentioned previously, Saha et al.§4@jibe orthogonal Chebychev
polynomials as agent functions. They provide an algoritbriearn the coefficients of the
polynomials using the observation history. However, bdit degree and the number of
polynomials is fixed a’priori thereby bounding the model@pa

3 Background: Interactive Influence Diagrams

We briefly describe interactive influence diagrams (I-ICg)fpr modeling two-agent inter-
actions and illustrate their application using a simplenepke.

3.1 Syntax and Solution

In addition to the usual chance, decision, and utility noddBs include a new type of
node called thenodelnode (hexagon in Fig.(&)). The probability distribution over the
model node represents an agent, ssybelief over the candidate models of the other agent.



In addition to the model node, I-IDs differ from IDs by haviagchance noded;, that
represents the distribution over the other agent’s actiand a dashed link, calledplicy
link.

(a) (b)

Figure 1:(a) A generic I-ID for agent situated with one other agejt The hexagon is the model
node whose structure we show (). Members of the model node may be IDs,BNs or I-IDs them-
selves (njl., mj2-); not shown here for simplicity) whose decision nodes arpped to the correspond-
ing chance nodesA(jl, A?). Depending on the value of nod&{od[ ], distribution of the chance
node is assigned td; with some probability.

The model nodel/;;_, contains as its values the alternative computational nsoa
cribed by: to the other ageni in a lower levell — 1. Formally, we denote a model of
J asm;,;—; which resides in a lower level within an |-ID. A model in the ded node, for
example, may itself be an I-ID, in which case the recursiomieates when a model is an
ID or a Bayesian network (BN). We observe that the model nodktlae dashed policy link
that connects it to the chance nodg, could be represented as shown in Fig. 1(b). Once
an I-ID or ID of j is solved and the optimal decisions are determined, thesidecnode is
transformed into a chance notleThe chance node has the decision alternatives as possible
states and is given a probability distribution to the stagsecifically, ifO PT is the set of
optimal actions obtained by solving the I-ID (or ID) like;, ,, thenPr(a; € A}) = ﬁ
if a; € OPT, 0 otherwise. The different chance nodeg,(A?), one for each model, and
additionally, the chance node labelédod[);] form the parents of the chance nodg,,
The states of\/od[M;] denote the different models ¢f The distribution oveM od[M;] is
1's belief overj’s candidate models (model weight) given the physical stat&he condi-
tional distribution of the chance nod4,;, is amultiplexerthat assumes the distribution of
each of the action nodesl, A%) depending on the state 8fod[)M;]. In other words, when
Mod[M;] has the state:}, the chance nodg; assumes the distribution of the nodé, and
A; assumes the distribution aff when M od[M;] has the state:?.

Solution of an I-ID proceeds in a bottom-up manner, and idemgnted recursively. We
start by solving the lower level models, which are tradiéibliDs or BNs. Their solutions

LIf j’s models are BNs a chance node representmdecisions will be directly mapped into a chance node
in the model node



provide probability distributions over the other agentstiens, which are entered in the
corresponding chance nodes found in the model node of theGiven the distributions over

the actions within the different chance nodes (one for eamthetof the other agent), the I-1D
is transformed into a traditional ID. During the transfotiag, the conditional distribution of

the node A;, is populated such that the node assumes the distributieaatf of the chance
nodes depending on the state of the naded[)/;]. The transformed I-ID is a traditional
ID that may be solved using the standard expected utilityimaation method [13].

3.2 lllustration

We illustrate I-IDs using an example application to the pugbod (PG) game with punish-
ment (Table 1) explained in detail in [6]. Two agentgndj, must either contribute some
resource to a public pot or keep it for themselves. To makey#imee more interesting, we
allow agents to contribute the fulF(C) or partial (PC) portion of their resources though
they could defect without making any contributian) The value of resources in the public
pot is shared by the agents regardless of their action anddeuhted by; for each agent
i, wherec; € (0, 1) is the marginal private return. As defection is a dominatagon, we
introduce a punishmern® to penalize the defecting agents and to promote contributio
addition, a non-zero cos}, of punishing is incurred by the contributing agents. Forim
ity, we assume each agent has the same \&lu®f private resources and makes a partial
contribution of X 7.

i, j FC PC D
FC QC,L'XT, %XTCZ‘ — %Cp, CiXT — Cp,
QCJ'XT %XT + %XTCJ' - %P XT + CjXT - P
PC %XT + %XTC'L' - %P, %XT + CiXT, %XT + %Cz‘XT - %P,
%XTCJ' — %Cp %XT + CjXT XT + %CjXT - P
D Xr+c¢Xr—P, XT+%CZ'XT7P, X,
CjXT — Cp %XT —+ %CjXT — %P Xr

Table 1:PG game with punishment. Based on punishmé&ntand marginal returr;, agents may
choose to contribute than defect.

We let agentsg andj play the PG game repeatedly a finite number of times and aim for
larger average rewards. After a round, each agent obsdreesrhultaneous action of its
opponent. Except for the observation of their actions, nditemhal information is shared
between the agents.

As discovered in field experiments with humans [2], différgmes of agents play the
PG differently. To act rationally,ascribes candidate behavioral modelg.tdve assume the
models are procedural taking the form of IDs and BNs.

For illustration, let agent consider four models of (m}, m3, m3, andmj) in the model
node at timef, as shown in Fig. 2. The first two modeh,; andm;, are simple IDs where



Figure 2:Example I-ID for the repeated PG game with four models asdrib;j. The dotted lines represent
the mapping between decision (chance) nodg&simodels and chance nodes in the model node.

the chance nodél, , .. ;) represents the frequencies of the different actions of tagen
in the game history (from to timet¢ — 1). However, the two IDs have different reward
functions in the value node. The modﬁ; has a typically low marginal private reture,
and represents a reciprocal agent who contributes only whextpects the other agent to
contribute as well. The modet? has a high; and represents an altruistic agent who prefers
to contribute during the play. The third modeig, is a BN representing thats behavior
relies on its own action in the previous time step {_,) andi’s previous action 4, ;).
m}* represents a more sophisticated decision process. Agemsiders not only its own and
i's actions at time — 1 (chance nodesd;;_; andA;;_,), but also agent’s actions at time

t —2 (A;:—2). Itindicates thay relies greatly on the history of the interaction to choose it
actions at time¢. We point out that these four models reflect typical behavadmhumans in
the field experiments.

The weights of the four models are the probability distiidmitover the values of the
chance nodeMod[M;]. As agenti is unaware of the true model gf it may begin by
assigning a uniform distribution td/od[M;]. Over time, this distribution is updated to
reflect any information thatmay have about's model.

4 Model Identification in I-IDs

As we mentioned previously, agentypothesizes a limited number of candidate models of
its opponeny, M; = {mj,...,m, .. ,m?}, and intends to ascertain the true mode}, of

j in the course of interaction. On observiylg action, where the observation in rouhds
denoted by, i may update the likelihoods (weights) of the candidate n®oitethe model
node of the I-ID. Gradually, the model that emerges as mkshlylimay be hypothesized to

be the true model of.



However, because the space of candidate models is ofterdbdénthe true model of
j may not be within the model space. For this case, we may ivelytexpect to identify
a model or a weighted combination of models within the mogeice whose predictions
arerelevantin determining those of the true model. Consequently, thdehialentification
problem in this case involves finding the weights of the medelthe model space and
updating the weights using the observations. We begin biodrg the traditional setting
where the true modely is in the model spacéy/;, and move on to the challenge where the
true model is outside the model space.

4.1 Case limj € M; (Traditional)

Leto; "' be the history of agerits observations up to time— 1. Agenti's belief over the
models ofj at time stei—1 may be written asPr (Mo} ) < ( Pr(m}), Pr(m?),...,Pr(m}),. ..
Pr(m}) ). If o is the observation at timg agent; may update its belief on receiving the
observation using a straightforward Bayesian process. \o she update of the belief for
some modehn7}, in Eq. 1.

PT(0§|m§‘L)PT(m§L|01:t—1)
2 myen, Proilm;) Pr(m;)

Here, Pr(oj|m7) is the probability ofj performing its observed action given that its model
ism?. This may be obtained from the chance nodein the I-ID of i.

Eqg. 1 provides a way for updating the weights of models coetihin the model node,
M;, given the observation history. In the context of the |-IDeat:’s belief over the other’s
models updated using the process outlined in Eq. 1 will cgaven the limit. Formally,

Pr(mj|o;) =

(1)

Proposition 1 (Bayesian Learning in I-IDs) If an agent’s prior belief assigns a non-zero
probability to the true model of the other agent, its posieheliefs updated using Bayesian
learning will converge with probability 1.

Proof of Proposition 1 relies on showing that the sequentleedgent’s beliefs updated
using Bayesian learning is known to be a Martingale [4]. Bsijon 1 then follows from a
straightforward application of the Martingale convergettteorem {4 of Chapter 7 in [4]).

The above result does not imply that an agent’s belief alwapserges to the true model
of the other agent. This is due to the possible presence otlmad the other agent that
areobservationally equivalerib the true model. For example, all modelsjahat induce
identical distributions over all possible future obseimapaths are said to be observationally
equivalent for agent When a particular observation history obtains, agéntunable to dis-
tinguish between the observationally equivalent modejs &f other words, observationally
equivalent models generate distinct behaviors for hissonhich are never observed.

2Saha et al. [12] bound the space of agent functions to these#in be modeled using finite degree Cheby-
chev polynomials and settle for a best fit.




4.2 Case2m; & M;

For computability purposes, the space of candidate modetsed toj is often bounded. In
the absence of prior knowledgemay be unaware whethgis true modelyn;, is within the
model space. Ifn} ¢ M; and in the absence of observationally equivalent modelge8an
learning may be inadequate. For this case, we naturallyotxpdind a candidate model or
a combination of models from the space whose predictionseéeeantin determining those
of the true model.

4.2.1 Relevant Models and Mutual Information

As the true model may lie outside the model space, our obgdito identify candidate
models whose predictions exhibit a mutual pattern with theeoved actions of the other
agent. We interpret the existence of a mutual pattern azeealthat the candidate model
shares some behavioral aspects of the true model. In ordierttas, we introduce a notion
of relevancenetween a model in/; and the true modely. Leta; be the observed action of
the other agent andaj; denote any other action from its set of actlons Defnéa;|m], a)

as the probability that a candidate modef of.”, predicts actlom1 giventhat} is observed.

Definition 1 (Relevant Model) If for a model, m7, there exists an actlom such that,

Pr(aj|lm},a}) > Pr(a;|m},a}), wherea; € OPT( 1), thenm? is a relevantmodel.

Jo J
In predictinga]l, modelm? may utilize the past observation history. Definition 1 fohzes
the intuition that a relevant model predicts an action thékely to correlate with a particular
observed action of the other agent. We note that the abovataefigeneralizes to a relevant
combination of models in a straightforward way. Given Deiam 1, we need an approach
that assigns large probabilities to the relevant modef(#)é nodel\/od[M;] over time. We
proceed to show one way of computing these probabilities.

We begin by observing that the chance nod&sd[M;], A; and the mapped chance
nodes,A;, A%, ..., form a BN, as shown in Fig.(3). We seek the weights of models in
Mod[M;] that would allow the distribution ovet; to resemble that of the observed actions.
Subsequently, we may map the problem to one of classifyiegptiedicted actions of the
individual models to the observed action pfand using the classification function for de-
riving the model weights. Because the candidate modelsdependent of each other, the
BN is naiveand the classification reduces to learning the parametenslittonal probability
distributions) of the naive BN using say, the maximum likelbd approach with Dirichlet
priors. For multiple agents, the models may exhibit depeo@s in which case we learn a
general BN. We show the equivalent naive BN in Figh)3

As relevant models hint at possible dependencies with the tmodel, we utilize the
mutual information(MI) between the chance nodef and say,A7, as a measure of the
likelihood of the model,m?, in Mod[M;]. Ml is a well-known way of quantifying the

] 1
mutual dependency between two random variables.

8



Time A" A? .. A" A

1 FC D D PC

2 D PC FC FC

3 FC PC D PC

4 FC FC PC D

5 D PC PC FC

6 PC FC D FC
()

Figure 3: (a) The BN in the I-ID of ageni; (b) The equivalent naive BN that we use for classifying the
outcomes of the candidate models to the observation histerExample of the training set used for learning
the naive BN for PG. The actions in columy are observations af while remaining columns are obtained

from models.

Definition 2 (Mutual Information) The mutual information (Ml) of the true model,; and
a candidate modefn7}, is computed as:

n " def n PT‘(A?,A]')
MI(m},m;) = Pr(Aj,Aj)ZOQ[W] )

n Pr(A?|A;)
= PT’(Aj |AJ)PT(A])ZOQ[W]
Here, A7 is the chance node mapped from the modgl.and A; assumes the distribution of
the observed actions generated by the true modgl,

Notice that Ml is non-negative. The terni&(A7}|4;), Pr(A7}) and Pr(A;) may be
calculated from the conditional probability distribut®af the naive BN. Here, the observed
history of j's actions together with the predictions of the models ouwaetmay serve as
the training set for learning the parameters of the naive Bi.show an example training
set for PG in Fig. 8). Values of the cqumnsA}, AJZ, ..., A7 are obtained by solving
the corresponding models and sampling the resulting digtans if needed. We utilize the
normalized Ml at each time step as the model weights in thaahaode )M od[V/;].

4.2.2 Theoretical Results

Obviously, modetn] isirrelevantifPr(a;[m?, a) = Pr(a;| m}, a;) foreacha; € OPT(m3).
Then, the following proposition is trivially obtained.
Proposition 2 If m is irrelevant, M I(m?,m}) = 0.

Proposition 2 implies that relevant models are assignedlzeniMI than irrelevant ones.

To enable further analysis, we compare the relevance of didai®e model with that of
another.



Definition 3 (Relevance Ordering) Leta; be some observed action of the other agerit
for two relevant modelsy) andm?, there exists an action,;, such thatPr(aj|m7, a}) >
1 * 1 n =% 1 — % 1 n
Pr(aj|m¥,a;) and Pr(aj|mjzaj) < Pr(aj|m},a3), Whel’e.aj € OPT(m}) , OPT(m%)
anda; denotes all other actions of the true model, thehis a more relevantodel than
p

mj.

Given Definition 3, we may show that models that are more aglbare assigned a
higher MI. Proposition 3 formalizes this observation (wendd show the proof due to space
constraints).

Proposition 3 If m is a more relevant model thang.’ as per Definition 3 ana} is the true
model, themV/ [ (m},m3) > M1 (m}, m}).

For the sake of completeness, we show that if the true madgljs contained in the
model space, our approach analogous to Bayesian learnihgpwierge.

Proposition 4 (Convergence)Given that the true modek; € M and is assigned a non-
zero probability, the normalized distribution of mutualamrmation of the models converges
with probability 1.

The proof is intuitive and relies on the fact that the estadgiarameters of the naive Bayes
converge to the true parameters as the observation histomsgsee chapter 3 of [10] for the
proof when thanaximum a posteriopproach is used for parameter estimation). Proposi-
tion 4 then follows because the termis(A”, A;), Pr(A7) and Pr(A;) used in calculating
the MI are obtained from the parameter estimates.

Analogous to Bayesian learning, the distribution of Ml maygt nonverge to the true
model in the presence Ml-equivalentmodels in}/;. In particular, the set of MI-equivalent
models is larger and includes observationally equivalesders. However, consider the ex-
ample whergj’s true strategy is to always seld€C, and let); include the true model as
well as a candidate model that generates the strategy oyalsedectingd. Though obser-
vationally distinct, the two candidate models are assigrtpthl MI because of the perceived
dependency between the action of selecbnlgy the candidate strategy and selectit@by
the true one.

4.2.3 Algorithm

We briefly outline the algorithm that uses Ml for model idénttion in Fig. 4. In each
roundt, agent; receives an observation of its oppongistaction (line 1). This observation
together with solutions from candidate modelsjofline 2), compose one sample in the
training setD (line 3; see Fig. &)). The training set is used for learning the parameters of
the naive BN (line 4) and subsequently for computing the rmagéghts in the I-ID. Given
the learned parameters, we compute the MI of each candidadelm.; andm; (line 6).

10



The posterior probabilities are also used in the conditipr@bability distribution (CPD) of
the chance nodd; in the I-ID (line 9). Notice that the CPDRr(A;|A%, mY), describes the
relation between the predicted actions by candidate madelghe observed actions. The
normalized Ml is assigned as the CPD of the chance riddé[)/;] in the I-ID (Lines 10-
11). This distribution represents the updated weight dverceindidate models gf Given
the updated model weights and the populated CPDs of the emanuzA ;, we solve the I-ID
of agent; to obtain its action.

Model Weight Update

Input: I-ID of agenti, observation!, training setD

1. Agenti receives an observatien ;

2. Solve the modemit (p =1,...,n)to get actions for the chance nodes
Aft(pzlv ,TL)

3. Add (4] ,,---, A%, -+, AT, 0i4) as a sample into the training Bt

4. Learn the parameters of thaive BNincluding the chance nodes,
A,..., A7, andA;

5.ForeachA? (p=1,...,n)do

6. ComputeM I(m?, m) using Eq. 2

7. ObtainPr(A;|A7) from the learnedhaive BN

8. Populate CPD row of the chance nadligusing Pr(A;| A}, mY)

9. end for

10. NormalizeM I(m?, m})

11. Populate CPD of the chance naded[)M;] usingM I

Figure 4:Algorithm revises the model weights in the model nat#ed[M;], on observing'’s action
using Ml as a measure of likelihood, and populates CPDs oftth@ce noded ;, by propagating the
learned naive BN.

5 Performance Evaluation

We evaluate the effectiveness of the algorithm outlinedgn4Fin the context of the repeated
public good game (Section 3.2) and repeated one-shot a€igos as in [12] though simpli-
fied. As we mentioned previously, if the true model falls aleshe model space, Bayesian
learning (BL) may be inadequate. Therefore, in additiongmg BL for comparison, we
also employ an adapted BL method (A-BL) that restarts the Bic@ss when the likelihoods
become zero by assigning candidate models prior weighitgyuke frequency with which
the actions are observed so far. Additionally, we alsoadithe KL-Divergence (KL) to
assign the likelihood of a candidate model. Lower is the Kiween the distributions over
A7 and Ay, larger is the likelihood of the corresponding modet..

We let agents and; play 1000 rounds of each game and repisraverage rewards. To
facilitate analysis, we also show the changing model weightoss rounds that are assigned
to the relevant and true models for the two cases — Casg £ M;, and Case 2in; ¢ M;.

11



5.1 Repeated Public Good Game

In the aforementioned PG game, we utilize the I-ID in Fig. Bntmdel the interaction. Agent
1 plays with the opponent multiple rounds of PG and aims to gain more rewards in the
long run by discovering’s true behaviorial model. For case 1, we let the model space,
M;, contain three modelsy;, m?, andm], that represent a reciprocal and two deliberative
agents, respectively. We let aggnplay using the true modety;. Fig. 5(a) demonstrates
the favorable performances of MI, BL and A-BL, which quickignverge to the true model
and gain almost the same average rewards.

For the evaluation of case 2, agémonsiders three candidate modelg’pﬂfnf, m?, and
m;*, while j uses the modehjl.. We observe that Ml obtains the largest average rewards
over the long run in comparison to other updating methodss iBhbecause Ml finds the
deliberative modely, to be most relevant to the true model,, that represents a reciprocal
agent and acts according to the frequency®éctions in the history. We note that MI does
not monotonically increase but assigns the largest weatited most relevant model at any
point in time. Notice that botlm} andm;* consider actions of the other agent, and identical
actions of the agents as promoted by a reciprocal model are vatuable. Both the A-BL
and KL methods recognize the altruistic mode}, as the most likely.

(a) Case 1 m} = mj, M;={m}, m3, mj}

1 T K _ -
6.5 | T

I /
6.4 t 08l
63

62 06 1

61|
04

Average Rewards
Model Weights

59 | oz |

58

Ml —8— Ml —8—
5.7 . - 0 -
1 10 100 1000 1 10 100 1000

Rounds Rounds

(b) Case 2 m} = mj, M;={m3, m?, m}}

6.4
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6.2 -

6 0.6 [

Average Rewards
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58| 04 \ ‘ t
b | AL/ fﬁ i RLomi ——
56 \ \ KL-myy ——
02k \ /\ / MbrtinsprrimaBl R0 |
\ ABL-m? —x—
54 F | A-BL-mj} ——

L L Ll
1 10 100 1000 1 10 100 1000
Rounds Rounds

Figure 5: Performance profiles for the two cases in the repeated PG.gdot&e that, for case 2,
the model weight assigned using BL drops to zero
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5.2 Repeated One-shot Negotiations

A seller agenti wants to sell an item to a buyer agent The buyer agent bargains with
the seller and offers a price that ranges fromo, Mid, to High. The seller agent decides
whether toaccept the offer (A), toreject it immediately (R), or tacounter the offer (C).

If 4+ counters the offer, it expects a new price offer from agenOnce the negotiation is
completed successfully or fails, the agents restart a nenoora different item; otherwise,
they continue to bargain. Figuré® shows the payoffs of the seller agent when interacting
with the buyer. The seller aims to profit in the bargaininggass. As in most cases of
negotiations, here the seller and the buyer are unwillinghtre their preferences with the
other. For example, from the perspective of the seller, stypes of buyer agents have
different bargaining strategies based on their risk pezfees.

7, ‘ A R C
Low | -1 1 1
Md| 1 0 1
High| 3 1 -1

Figure 6: (a) Single shot play of a negotiation between the selland buyer;. The numbers
represent the payoffs of the selléb) I-ID for the negotiation with four models ascribed to

The idea of using probabilistic graphical models in mukiagnegotiation was previ-
ously explored in [9]. In the same vein, we model agaming the I-ID shown in Fig. ).
Analogous to [12], we consider four types of the buyer ageiltach of them is represented
using a BN. They differ in the probability distributions fthre chance node’iskthat rep-
resents the risk attitude amgtg, which represents the urgency of the situation to the agent.
Let modelm]l represent a buyer of a risk averse type. A risk averse agesnamaversion
to losing the deal and hence always proposes a high offersétend modelr,nﬁ, is a risk
seeking buyer that adopts a risky strategy by intending fier af low price. Modebnj? is a
risk neutral buyer that balances its low and high offers mnkgotiation. The final model,
m}*, Is a buyer that is risk neutral but in an urgent situatioreigex to acquire the item. Con-
sequently, it is prone to offering a high price. Note that¢thance nodéleg ;_; represents
i's previous action in the negotiation.

We let agent consider three candidate models forn}, m?, andm?, and ageny use
the modelm} for case 1. Fig. ) reveals that all the different updating methods correctly
identify the true model after some steps and gather sim#\aards. However, KL assigns
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non-zero weights to other models as the distribution fromsétandidates is somewhat close
to that of the true model. Becaugés risk averse, it often offers a high price that the seller
chooses to accept thereby incurring a payoff of 3.

(a) Case L m} = mj, M;={mj, m3, m}}
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Figure 7:Performance profiles and the changing model weights fortloecaises while repeatedly
playing the negotiation game.

In case 2, agentplays the game using the modei;*, and: assumes the remaining three
models as candidates. Notice that Ml eventually assignsatigest weight4 0.5) to the
risk averse agentrnjl., that always offers a high price in the negotiation. Thisdwtr is
consistent with the modevb,z;*, that represents an urgent buyer who is also prone to offerin
a high price. The remaining two candidate models are Mlagdent. In comparison, both
KL and A-BL methods incorrectly identify the risk neutraleagmﬁ, which leads to lower

average rewards.

6 Discussion

Our experimental results in multiple problem domains destrate that the normalized dis-
tribution of MI of the candidate models learned by classifytheir predictions exhibits a
comparable performance to Bayesian learning when the togehis within the set of can-
didate models. In particular, the experiments verify thatdistribution of Ml converges for
this case. Perhaps more importantly, it improves on therdtbaristic approaches for the
plausible case that the true model is outside the model spBees, our approach shows
potential as a general purpose technique for modeling @fpents when we are uncertain
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whether the model space is exhaustive. However, an imgdramation to consider is a
possibly large set of MI-equivalent models.

Our use of I-IDs to model the repeated interactions betwgents provides an intuitive

way to ascribe procedural models such as IDs, I-IDs and BN#ier agents. In comparison
to agent functions, these models promote an understanélthg dehavior of the agent and
allow the explicit representation of domain structure andvidedge. However, these models
must be solved to obtain their predictions thereby posimgpaational challenges.
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