
A Decomposition Algorithm for Learning
Bayesian Network Structures from Data

Yifeng Zeng and Jorge Cordero Hernandez

{yfzeng,jorgecordero}@cs.aau.dk

Dept. of Computer Science, Aalborg University, DK-9220 Aalborg, Denmark

Abstract. It is a challenging task of learning a large Bayesian network
from a small data set. Most conventional structural learning approaches
run into the computational as well as the statistical problems. We pro-
pose a decomposition algorithm for the structure construction without
having to learn the complete network. The new learning algorithm firstly
finds local components from the data, and then recover the complete net-
work by joining the learned components. We show the empirical perfor-
mance of the decomposition algorithm in several benchmark networks.

Key words: Bayesian Networks, Graphical Models, Structure Learning

1 Introduction

Bayesian networks (BN) [1, 2] are widely used to represent probabilistic relation-
ship among random variables. They have been successfully applied in many do-
mains such as medical diagnosis, gene data analysis, and hardware troubleshoot-
ing. Over the last decade, much progress has been made regarding structural
learning in Bayesian networks including both the score-based and the constraint-
based learning methods [3–6]. The score-based method tries to optimize a scoring
function by means of a search strategy. Since finding the optimal Bayesian net-
works was shown to be an NP-complete problem [7], one has to resort to some
heuristic search strategy. The other is constraint-based and infers structures
through conditional independency tests. The constraint-based is generally faster
than the score-based method and gives a trustworthy result provided there are
sufficient data. We focus on the constraint-based learning methods in this pa-
per. Currently, with the mass-throughput data in biomedical informatics, data
analysis demands more powerful learning algorithms that could handle data sets
having thousands of variables but with limited sample sizes. Most conventional
learning methods run into the computational and statistical problems in such
a domain. They either can’t complete the learning process, or produce a poor
structure even when the learning is done. Hence, in this paper, we propose a
decomposition algorithm for learning a large Bayesian network from a small
amount of data.

The decomposition learning algorithm adopts the divide-and-conquer strat-
egy and contains several procedures to complete the learning task. We discover
a set of clusters from a dependency graph built directly from the data. Each

cluster is expected to represent a local domain structure. We establish connec-
tion between clusters and learn each cluster separately. The learned clusters are
joined together to compose the complete targeted network.

The novel algorithm reduces the computational complexity since it learns
clusters instead of the complete network directly. In addition, the algorithm
learns clusters in a separated way so that the structural error(due to conditional
independency tests) that occurs in the learning of clusters does not influence
the global structure learning. Hence, the algorithm avoids the cascading effect
of incorrect statistical test results in the structural learning. We experiment the
proposed algorithm on several benchmark Bayesian networks and compare with
other typical constraint-based learning algorithms. The empirical results show
that the decomposition algorithm achieves good performance regarding both
structure learning accuracy and run times.

This paper is organized as follows. In Section 2, we discuss some related
works on structural learning. In Section 3, we present the decomposition learning
algorithm by illustrating embeded procedures. Then, we show comparison results
in Section 4. Finally, in Section 5, we conclude the paper with some hint on future
work.

2 Related Work

The divide-and-conquer strategy has served as the technique of many learn-
ing algorithms that aim at recovering a large Bayesian network structure from
data [8–10]. The foundation of this strategy is to identify some appropriate
components in a large model. For example, in the approach of learning module
networks [9], a module is defined as a set of variables that have similar behavior.
All variables in a module share both the same parents and the same conditional
probability distribution. It seems that the module formulation is quite strict.
However, the formulation is well consistent with some domain concepts such as
genes in a cell, stocks in a stock sector, and so on. The sparse candidate al-
gorithm [8] recovers Bayesian networks by specifying the maximum number of
parents of variables in the learning process, which significantly reduces the learn-
ing complexity. Both the module learning and the sparse candidate approaches
orient score-based learning.

The most relevant work is the block learning algorithm [10] that already
shows the ability of learning a large Bayesian network from limited data. Sim-
ilarly, the block learning algorithm recovers structures through procedures of
identifying blocks and combining the learned blocks. However, the block identi-
fication procedure is incomplete since the block is composed of nodes that have
at most two-length distance from block centers. The searching largely depends on
the topology of a dependency graph and probably leads to disconnected blocks
in some domains. In addition, as shown in the previous work, a large amount
of run times are spent in learning overlapping structures. However, the extra
procedure does not have much benefit to the final (heuristic) structural combi-
nation. Our new algorithm improves the block learning algorithm by designing
more robust and appropriate procedures.

3 Decomposition Learning Algorithms

A constraint-based approach learns a network structure by using some statistical
hypothesis tests to detect dependency or (conditional) independency among vari-
ables or attributes in a data set. The results of several tests are combined by the
constraint-based approach in order to construct a Bayesian network structure.
The test results might be incorrect especially when insufficient data are pro-
vided. Since various test results might depend on each other in some unknown
manner, the error of the induced structure is not under control and spread in
a global way. In addition, a large number of variables lead to an increasing or-
der of conditional independency tests, which makes the learning intractable. To
circumvent these shortcomings, we propose the decomposition algorithm that
enhances the learning ability of conventional learning techniques by specifying a
modular framework.

We briefly describe the decomposition learning algorithm in Fig. 1. The algo-
rithm receives the data set D of size l 1 and the parameter ε used to control the
cluster expansion (line 4). We firstly construct the dependency graph M directly
from the data through the procedure of building a dependency graph (BDG)(line
2). The first procedure also produces two sets of edge weights, WM and WG,
for the dependency graph M and the complete graph G respectively. Then, we
partition M into several disjoint clusters using the procedure of star discov-
ery (SD)(line 3). The procedure is highly motivated by current research work
on complex network [11, 12] and is rather reliable to generate consistent clusters.
The disjoint clusters reveal some local components that shall be connected in
the domain. Hence, we expand the clusters into a set of overlapping clusters by
discovering a high correlation between inter-cluster memberships. The procedure
of cluster expansion (CE) uses the parameter ε to control the proportion of over-
lapping variables in the truly correlated clusters (line 4). We proceed to learn a
Bayesian knot for each overlapping cluster separately by structuring the relation
of cluster variables. The procedure of learning Baysian knots (LBK) may utilize
any of available structural learning algorithms (line 5). Finally, we use structural
rules to combine the learned Bayesian knots and recover the complete Bayesian
network structure B in which a set of nodes V B are connected with directed
edges EB .
3.1 Build a Dependency Graph

Bayesian network structures exhibit the dependency among variables in a data
set. A strong dependency always gathers the variables into one local component.
In other words, the tightly linked variables are potential nodes that will be
enclosed in the same cluster. We expect to build a representative dependency
graph from which some sound clusters could be discovered. The graph must
be able to characterize a strong dependency of domain variables through their
connectivity. We select the maximum spanning tree [13] as the dependency graph

1 Both the attribute xi in data set and the node or vertex vi in graphs represent
variables in the domain. They are interchangable and not further distinguished in
this paper.

Decomposition Learning Algorithm (DL)

Input: D = {x1,l, · · · , xn,l} and parameter ε
Output: A Bayesian network structure B = (V B , EB)
1: Load the data D
2: Build the dependency graph M : (M, W M , W G) = BDG(D)
3: Partition M into a set of disjoint clusters C: C = SD(M, W M)
4: Expand C into a set of overlapping clusters OC: OC = CE(C, W G, ε)
5: Learn a set of Bayesian Knots BK: BK = LBK(OC, D)
6: Compose the final Bayesian network structure B: B = CBK(BK)

Fig. 1. The decomposition learning framework includes multiple procedures that will
be illustrated subsequently.

M since the tree is the smallest connected graph that optimally approximates the
joint distribution of domain variables. The dependency graph M = (V M , EM)
is a tree in which each edge, ei,j ∈ EM , connects a pair of nodes vi and vj (vi,
vj ∈ V M) and the edge has the weight wi,j (wi,j ∈ WM) measured by the
mutual information MI(vi, vj). We show the procedure of building a dependency
graph (BDG) in Fig. 2.

Build a Dependency Graph (BDG)

Input: Data D = {x1,l, · · · , xn,l}
Output: M = (V M , EM), W M , W G

1: Compute the complete Graph G = {V G, EG} with weights
W G = {wi,j = MI(vi, vj)|i, j = 1, · · · , n and i 6= j}

2: k = 0, EM ← ∅, W M ← ∅ .Initialization
3: Sort EG decreasingly according to the weight wi,j ∈W G

4: For ei,j ∈ EG ∧ k < |V M | do
5: If({ei,j} ∪ EM) do not create a cycle in M Then

6: EM ∪← {ei,j}, W M ∪← {wi,j}, k = k + 1

Fig. 2. The BDG procedure builds the maximum spanning tree as the dependency
graph M from the data D.

We compute MI(vi, vj) for all pairs of variables (for l-size samples) and
construct the complete graph G (line 1). We use the hash table that shows
efficient computation. The complexity of this task is in the order of O(n2).
We slightly modify the Kruskal’s algorithm to build the tree M (the original
Kruskal’s algorithm [14] finds the minimum spanning tree by sorting weights
decreasingly instead of increasingly) (lines 3-6). We use an union-finder data
structure and a sorted list for adding arcs into M . The complexity is in the
order of O(n log n).

3.2 Discover Local Components

The output M is a minimal description of dependency among the variables.
We opt for this dependency graph because it represents the most significant in-
teractions in a topology that could be clustered (recall that variable clustering
in complex graphs is an NP-hard problem). Many clustering methods [15, 16]

have appeared and shown competitive results in some domains. However, most
of them aim for different optimization problems. Moreover, they can’t gener-
ate consistent clusters due to random selection of initial cluster modes. We are
interested in offering a robust algorithm that clusters a set of truly dependent
variables by examining a graph topology together with edge weights.

We aim to find a set of clusters C (each cluster Ci contains a set of vertices
V Ci in which one vertex vj is called as cluster center node oj) that maximize the
function in Eq. 1. In other words, we want to maximize the sum of depenency
weights (between cluster variables vi and cluster nodes oj) over multiple clusters.

C = argmax
C

∑
Ci∈C

∑
vi∈(V Ci−{oj})

wi,j (1)

where oj is the center node vj in the cluster Ci and wi,j ∈ WG.
We use some sound graph operations to maximize Eq. 1 and show the Star

Discovery (SD) procedure in Fig. 3. The idea is motivated by current research
results on complex networks and evolves from the spanning star in the scale-free
networks [17]. The research characterizes domain patterns in terms of connectiv-
ity of nodes, densities of clusters of nodes, and so on. It indicates that nodes of
strong relations are always close and reside in a neigboring position. It suggests
some hidden, but natural, domain patterns could be discovered by investigating
the constructed graph topology.

Star Discovery Procedure (SD)

Input: M = (V M , EM), W M

Output: C = {C1, C2, · · · , Ck}
1: For each vi ∈ V M

2: oi←vi

3: Adj(vi)
∪← {vj} iff ei,j ∈ EM

4: Leaf(vj)
∪← {vh} iff eh,j ∈ EM ∧ vj ∈ Adj(vi)

∧eh,∗ 6∈ (EM − {eh,j})
5: V Si

∪← {oi} ∪Adj(vi) ∪ Leaf(vj)

6: ESi
∪← {ei,j} ∪ {eh,j}

7: W Si =
∑

(wi,j + wh,j) . Star weights
8: While V S 6= ∅
9: Ck←V Si iff Si = argmax

Si∈S
(W Si ∈W S)

10: S←(S − Si − Sj), W S←(W S −W Si −W Sj)
iff vj ∈ Si ∧ vj = (oj ∈ Sj)

11: C
∪← Ck, V S←(V S − C)

Fig. 3. The SD procedure finds a set of disjoint clusters C from M through the building
of star graph S and avoids random initialization of clusters.

We start by building a set of stars S = {S1, · · · , Sn|Si = (V Si , ESi)} (lines 2-
7). Each star Si is not a single node, but a connected sub-graph in the dependency

graph. We initialize each node vi as the star center node oi (line 2). The center
node oi, together with its adjacent nodes Adj(vi) and leaf nodes Leaf(vj) next
to the adjacent nodes vj (vj ∈ Adj(vi)), composes the initial n stars (lines 3-6).
In addition, we compute the star weight WSi that is the sum of weights for all
edges in Si (line 7). Then, we find a set of clusters C from the set of stars S
and each cluster Ck contains only vertices V Ci without edges (lines 8-11) 2. The
star Si that has the largest star weight WSi of all remained stars is chosen as
the cluster (line 9). When the star Si becomes a cluster it will be removed from
the set S together with the stars Sj that have the center node oj residing in the
selected star Si (line 10). Afterwards, we select the star of the second largest
weight as a new cluster. Hence, we get a set of k clusters in an iterative way
without having to specify the cluster number k in the initialization. The SD
complexity is dominated by the building of stars and takes O(n3) operations
searching for all adjacent and leaf nodes.

The SD procedure maximizes Eq. 1 through finding clusters that contain
nodes close to cluster centers in the dependency graph. We notice the SD proce-
dure avoids random initialization of clusters since it builds clusters by selecting
the star that has the largest weight among all remained stars. Consequently, we
do not need to specify the cluster number k and get consistent clusters upon one
data set. This is significantly different from other clustering methods that need
to assume a number of initial clusters at random.

3.3 Cluster Expansion

A cluster contains a set of most correlated variables that may compose a local
component in the domain. Since the SD procedure may result in disjoint clus-
ters we may lose some local correlations that link variables in separated clusters.
In addition, we need to recover the complete network structure by joining lo-
cal cluster structures. The interdependency of clusters will provide foundation
in the combination phase. Hence, we proceed to expand disjoint clusters into
overlapping clusters by discovering cluster interdependency.

We present the Cluster Expansion (CE) procedure in Fig. 4. The basic idea
is to expand clusters by including outlier variables that have most strong de-
pendency with cluster memberships. The procedure uses two phases, cluster
expansion (lines 1-6) and region expansion (lines 7-14), to generate a set of over-
lapping clusters. In the first phase, we use the parameter ε to control the number
of overlapping variables for possibly expanded clusters (line 3). For each clus-
ter Ci, we identify d|Ci| ∗ εe (the ceil function d·e) numbers of outlier variables
vj that have the most strong dependency with cluster variables vi by measur-
ing their weights (line 4), and include these outlier varliables into the targeted
cluster (line 6). The complexity of this phase is governed by the searching of
relevant variables in k disjoint clusters and is in the order of O(ksn) where s is
the maximal cardinality of any given cluster Ci.

In the first phase, clusters are expanded through absorbing a limited num-
ber of outlier variables that have strong dependency with cluster memberships.
2 Since a cluster contains only vertices we sometimes use Ci as V Ci depending on the

context.

Cluster Expansion Procedure (CE)

Input: C = {C1, C2, · · · , Ck}, ε ∈ (0, 1], W G

Output: OC = {OC1, OC2, · · · , OCk}
Phase 1: Cluster Expansion

1: OC←C,OV←∅ .Initialization
2: For each Ci ∈ C
3: For m = 1 to d|Ci| ∗ εe
4: vj = argmax

(vh∈Ci)∧(vj 6=OVi)∧(vj∈(C−Ci))

(wh,j ∈W G)

5: OVi
∪← {vj} . Overlapping nodes

6: OCi←Ci ∪OVi

Phase 2: Region Expansion

7: R←OCk .Initialization
8: For each OCr ∈ (OC −R)
9: If (R ∩OCr) 6= ∅
10: R

∪← OCr

11: If (OC −R) 6= ∅
12: vj = argmax

(vi∈R)∧(vj∈(OC−R))

(wi,j ∈W G)

13: OCi
∪← {vj}, OVi

∪← {vj} iff vi ∈ OCi

14: R
∪← OCi

Fig. 4. The CE procedure expands disjoint clusters by absorbing most relevant outlier
variables into targeted clusters.

Consequently, some isolated regions that contain a set of connected clusters may
appear. For example, through the CE procedure, four disjoint clusters (C1, C2,
C3, and C4) may result in two isolated regions, (OC1 ∪OC2) and (OC3 ∪OC4).
The cluster C1 locates d|C1| ∗ εe most relevant variables all of which reside in the
cluster C2, and the cluster C2 finds all the most relevant variables in the cluster
C1; so do the clusters C3 and C4. We need to remedy the cluster expansion phase
to ensure the cluster reachability (direct or undirect) if it is necessary.

In the same vein as cluster expansion phase, the second phase expands iso-
lated regions by including (region) outlier variables that have the most de-
pendency with region variables. We compose the region R by connecting the
clusters (from the first phase) that have already shared some overlapping vari-
ables (lines 9-10). Then, we detect possible isolated regions (line 11). If such
regions exist we need to connect them by adding the most relevant outlier vari-
ables vj into the targeted cluster (lines 12-13). We also get the byproduct of a
set of overlapping nodes OVi (line 13). The complexity of the second phase is
dominated by the searching of relevant nodes in possibly isolated regions and is
in the order of O(nm) where m is the maximum number of variables within one
region.

3.4 Recover Bayesian Network Structures

The CE procedure expands the disjoint clusters so that each cluster is con-
nected to at least one of other clusters. We proceed to learn a set of Bayesian

Knots (BK) by structuring relations of variables in clusters. We describe the
learning Bayesian knots (LBK) procedure in Fig. 5. The procedure receives the
input of the data set D and a set of overlapping clusters OC (line 1). We apply
any of available structual learning algorithms to construct a Bayesian knot (BK)
that is a directed acyclic graph (line 3). Each BKi contains a set of nodes V BKi

connected by directed edges EBKi and could be viewed as a local structure in the
domain. The procedure complexity relies on the selected learning algorithm (line
3). For example, if the PC algorithm is used the complexity is in the order of
O(krq) for learning k clusters where q is the maximum number of parents for
a node and r is the largest cluster size. In general, a cluster contains a small
subset of domain variables (r � n). The complexity is relatively low comparing
with the order of O(nq) for learning the complete network directly.

Learning Bayesian Knots(LBK)

Input: Data D, Clusters OC
Output: BK = {BK1, BK2, · · · , BKk}
1: Load the data D
2: For each OCi ∈ OC
3: Construct BKi using any structural learning algorithm

4: BK
∪← BKi

Fig. 5. The LBK procedure learns Bayesian knots (much smaller than the complete
network) using any of available structural learning algorithms and recovers local domain
structures.

The final procedure is to complete the learning task by joining the learned
Bayesian knots that share common variables. We show the procedure of combin-
ing Bayesian knots in Fig. 6. The procedure takes some rules to address conflict-
ing structural problems and to avoid global directed cycles in the network. The
conflict occurs when the direction of arcs connecting overlapping nodes differs
in linked knots.

Combine Bayesian Knots(CBK)

Input: BK = {BK1, BK2, · · · , BKk}
Output: B = (V B , EB)
1: Start the global skeleton of a complete network B = {V B , EB}
2: EB←(EB − {eij}) iff eij 6∈ EBKi

3: For each BKi ∈ BK
4: Orient eij ∈ EB iff eij ∈ EBKi ∧ eij 6∈ (EBK − EBKi)
5: For all undirected edges eij ∈ EB

6: If vi → vj , vj and vh are adjacent, and vi, vh are not adjacent,
then orient vj − vh as vj → vh

7: If there is a directed path from vi to vj , and vi, vj are adjacent,
then orient vi − vj as vi → vj

8: Otherwise, orient vi − vj at random

Fig. 6. The CBK procedure joins Bayesian knots into the complete network through
structural rules without furthering (in)dependency tests.

We start the Bayesian network B with a complete undirected graph (line 1).
Then, we remove edges from the complete graph that do not exist in any of the
learned Bayesian knots (line 2). All the remained edges must be directed in at
least one of the Bayesian knots. We direct those edges that have already been
oriented in at most one Bayesian knot (line 4). Subsequently, we use three rules
to orient the rest undirected edges since the edges are directed differently in over-
lapping Bayesian knots (lines 5-8). The first rule is to avoid new v-structures (line
6). In most constraint-based learning methods, directions of edges participating
in v-structures are uncovered using independency tests, rather than through
structural rules afterwards. The second rule avoids directed cycles by forcing
the arc direction (line 7). Finally, if both rules can’t be applied we orient edges
randomly following directions in one Bayesian knot (line 8). The combination
procedure aims for the arc orientation using structural rules instead of expensive
independency tests.
4 Experimental Results

We demonstrate the empirical performance of the decomposition learning al-
gorithm on several benchmarks : ALARM (37 nodes), Hailfinder (56 nodes),
HeparII (70 nodes), Pathfinder (109 nodes), and Andes (223 nodes). We also
compare the performance with two typical constraint-based learning methods.
One is the basic learning method of the PC algorithm [3] and the other is three
phase dependency analysis (TPDA) [18] algorithm that is the winner of 2001
KDD cup. In addition, we compare with the block learning algorithm. We gener-
ate several data sets (ranging from small to large sample sizes) and compute the
Euclidean distance (of the sensitivity and specificity from the perfect score 1) [19]
between the learned structures and the benchmarks. The Euclidean distance is
defined in Eq. 2.

distance = 2
√

(1− sensitivity)2 + (1− specificity)2 (2)

where the sensitivity of the algorithm is the ratio of correctly identified edges
(undirected arcs) over the total number of edges in the real network while the
specificity is the ratio of edges correctly identified as not belonging in the graph
over the true number of edges not present in the real network.

In most cases, we show that the decomposition learning algorithm outper-
forms other learning algorithms and achieves lower distance values. In particu-
lar, the new algorithm keeps a good quality structure even when the data set is
reduced. Furthermore, we obtain computational savings from using the decom-
position algorithm as indicated by the low run times.

We show the performance of the decomposition learning algorithm in Fig. 7 3.
Each data point is the average of 10 runs for different data sets of same size 4.
Both the decomposition and the block learning algorithms that are equipped

3 We specify ε ∈ [0.40,0.60] concerning the tradeoff between the cluster size and the
overlapping set.

4 We only count successful runs of the BL algorithm when it produces connected local
structures.

Alarm

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10K 8K 5K 1K 0.3K 0.1K
Sample Sizes

D
is

ta
nc

e
PC TPDA
BL-PC BL-TPDA
DL-PC DL-TPDA

Hailfinder

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

10K 8K 5K 1K 0.3K 0.1K

Sample Sizes

D
is

ta
nc

e

PC TPDA
BL-PC BL-TPDA
DL-PC DL-TPDA

HeparII

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

10K 8K 5K 1K 0.5K 0.3K
Sample Sizes

D
is

ta
nc

e

BL-PC BL-TPDA

DL-PC DL-TPDA

Pathfinder

0.18

0.23

0.28

0.33

0.38

0.43

0.48

10K 8K 5K 1K 0.5K 0.3K
Sample Sizes

D
is

ta
nc

e

BL-PC BL-TPDA

DL-PC DL-TPDA

Andes

0.18

0.23

0.28

0.33

0.38

0.43

0.48

0.53

10K 8K 5K 2K 0.8K 0.5K
Sample Sizes

D
is

ta
nc

e

BL-PC BL-TPDA

DL-PC DL-TPDA

Fig. 7. Performance profile of the decomposition learning algorithm comparing with
other learning algorithms. The dotted lines with different colors denote the PC and
TPDA learning algorithms, the dashed lines, BL − PC and BL − TPDA, denote
the block learning algorithms configured by the PC and TPDA learning engines re-
spectively, and the solid lines, DL− PC and DL− TPDA, denote the decomposition
learning algorithms equipped with the PC and TPDA learning techniques (in the
LBK procedure) respectively.

with learning engines have better performance than the PC and TPDA learn-
ing algorithms regarding the distance measure. This remains true for a range
of data sets. For small domains, such as Alarm and Hailfinder networks, both
the decomposition learning algorithm and the block learning algorithm exhibit
similar performance of low distance. However, the decomposition algorithm has
significantly better results on the rest three large networks, especially for small
data sets. We report only the performance of the BL and DL learning algorithms
on the three larger networks since both the PC and TPDA algorithms fail.

Alarm

10

25

40

55

70

85

100

115

130

145

160

175

190

205

10K 8K 5K 1K 0.3K 0.1K
Sample Sizes

R
un

tim
es

(s
)

PC TPDA
BL-PC BL-TPDA
DL-PC DL-TPDA

Hailfinder

10

45

80

115

150

185

220

255

290

325

360

395

430

465

500

10K 8K 5K 1K 0.3K 0.1K
Sample Sizes

R
un

tim
es

(s
)

PC TPDA
BL-PC BL-TPDA
DL-PC DL-TPDA

HeparII

25

45

65

85

105

125

145

165

185

205

225

245

10K 8K 5K 1K 0.5K 0.3K
Sample Sizes

R
un

tim
es

(s
)

BL-PC BL-TPDA

DL-PC DL-TPDA

Pathfinder

50

70

90

110

130

150

170

190

210

230

250

270

290

310

10K 8K 5K 1K 0.5K 0.3K
Sample Sizes

R
un

tim
es

(s
)

BL-PC BL-TPDA

DL-PC DL-TPDA

Andes

100

180

260

340

420

500

580

660

740

820

900

980

10K 8K 5K 2K 0.8K 0.5K
Sample Sizes

R
un

tim
es

(s
)

BL-PC BL-TPDA

DL-PC DL-TPDA

Fig. 8. Runtimes comparison (3GHz, 2GB RAM). The decomposition algorithm is
scalable in learning large domains.

We also observe from Fig. 7 that the decomposition learning algorithm retains
a good quality of learned structures when the sample size is noticeably reduced.
In addition, the decomposition algorithms have a lower variance than the block
learning algorithms. This is due to the DL method has a reliable clustering
method SD comparing with the incomplete block identification in BL.

Finally, the run times in Fig. 8 are indicative of the computational savings
incurred by using the decomposition learning algorithm. The decomposition al-
gorithm achieves more savings than the block learning algorithm since the latter
needs an expensive procedure of learning overlapping structures. Using the de-
composition algorithm we were able to learn the three large domains of HeparII,
Pathfinder, and Andes, while both the PC and TPDA algorithms run out of
memory. We expect similar results of good performance without intensive com-
putation in real applications.

5 Discussion

The decomposition learning algorithm is able to learn a large Bayesian network
structure and shows good performance even when insufficient data are provided.
It significantly improves the block learning algorithm on the aspects of robust
clustering methods and well-defined combination rules. The modular design pro-
vides a way to exploit state-of-the-art of both Bayesian network learning and at-
tribute clustering techniques. In addition, the decomposition learning algorithm
offers useful intermediate clusters or Bayesian knots that represent local domain
structures and may attract interest into further study. Several issues relevant to
the decomposition learning algorithm deserves further study. We are currently
investigating an adaptive cluster expansion.
References

1. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

2. Jensen, F.V.: An introduction to Bayesian networks. Springer, New Work (1996)
3. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer,

New Work, USA (1993)
4. Heckerman, D.: A tutorial on learning in bayesian networks. (1995)
5. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall (2003)
6. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing bayesian

network structure learning algorithm. Mach. Learn. 65(1) (2006) 31–78
7. Chickering, D.M.: Learning bayesian networks is np-complete. In: Proceedings of

AI and Statistics, 1995. (1995)
8. Friedman, N., Nachman, I., Peer, D.: Learning of bayesian network structure from

massive datasets: the sparse candidate algorithm. In: UAI. (1999) 206–215
9. Segal, E., Pe’er, D., Regev, A.: Learning module networks. In: UAI. (2003) 525–534

10. Zeng, Y., Poh, K.L.: Block learning bayesian network structure from data. In:
Proceedings of the Fourth International Conference on Hybrid Intelligent Systems
(HIS-04). (2004) 14–19

11. Newman, M.E.J.: The structure and function of complex networks. SIAM Review
45(2) (1957) 167–256

12. Albert, R.Z., Barabasi, A.L.: Statistical mechanics of complex networks. Modern
Physics (74) (2002) 47–97

13. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Transaction on Information Theory (12) (1968) 462–467

14. Sedgewick, R.: Algorithms in Java, Part 5 Graph Algorithms. Addison Wesley
(2004)

15. Asano, T., Bhattacharya, B., Keil, M., Yao, F.: Clustering algorithms based on
minimum and maximum spanning trees. Proceedings of the fourth annual sympo-
sium on Computational Geometry (1988) 252–257

16. Grygorash, O., Zhou, Y., Jorgensen., Z.: Minimum spanning tree based clustering
algorithms. IEEE International Conference on Tools with AI (2006)

17. Gallian, J.: Dynamic survey of graph labeling. Elec. J. Combin. 14(6) (2007)
18. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning bayesian networks

from data: An information-theory based approach. Artificial Intelligence, 137(1)
(2002) 43–90

19. Tsamardinos, I., Aliferis, C., Statnikov, A.: Time and sample efficient discovery of
markov blankets and direct causal relations. In: KDD. (2003) 673–678

