
Experiments with Online Reinforcement
Learning in Real-Time Strategy Games

Kresten Toftgaard Andersen, Yifeng Zeng∗,
Dennis Dahl Christensen and Dung Tran

Dept. of Computer Science, Aalborg University
DK-9220 Aalborg, Denmark

Abstract

Real-Time Strategy (RTS) games provide a challenging platform
to implement online reinforcement learning (RL) techniques in a real
application. Computer as one player monitors opponents’ (human or
other computers) strategies and then updates its own policy using RL
methods. In this paper, we firstly examine the suitability of applying
the online RL in various computer games. RL application depends
much on both RL complexity and the game features. We then propose
a multi-layer framework for implementing online RL in an RTS game.
The framework significantly reduces RL computational complexity by
decomposing the state space in a hierarchical manner. We implement
an RTS game - Tank General, and perform a thorough test on the
proposed framework. We consider three typical profiles of RTS game
players and compare two basic RL techniques applied in the game.
The results show the effectiveness of our proposed framework and
shed light on relevant issues on using online RL in RTS games.

1 Introduction

A Real-Time Strategy (RTS) game is a computer game in which players
intend to defeat opponents by gathering resources, building bases, and ex-
ploring game fields. It demands players to monitor opponents’ behaviors and
to be adaptive on taking counter strategies. As the name RTS indicates, the
players shall make real-time decisions while interacting with the opponents

∗Corresponding Author E-mail: yfzeng@cs.aau.dk

1

over time. Generally, the RTS setting contains a large number of game states
and complex relations among them. The data about both players’ behaviors
and game fields accumulates as the game is moving on. Thus, an RTS appli-
cation may frustrate conventional reinforcement learning (RL) (Sutton and
Barto 1998) techniques due to the curse of dimensionality on the state space
and insufficient data.

Most of game developers use RL or other learning algorithms in the test
phase of game programming or around this phase (Laird and van Lent 2005).
The learning algorithm is well tested before a game product is shipped out
to the target customers. When the learning converges toward one or more
usable and optimal strategies the strategies are then hard-coded into a script
that a computer player would read later on. By following the scripted strate-
gies, computer players exhibit monotonic behaviors and become dumb over
time when the strategies are detected by their opponents. To the best of
our knowledge, most of current computer games do not implement online RL
when players start the game. This may be firstly due to RL’s requirement
on a large amount of computation which usually is not allowed online. Sec-
ondly, online RL utilization puts computer players out of the control of game
developers since unexpected paths toward the game goal may occur in the
course of games. Hence, implementing various online RL techniques is more
desirable in computer games, but challenges current game development.

We firstly investigate the suitability of using online RL in most genres
of computer games and conclude some game candidates. The suitability
depends a lot on the complexity of games, the number of different entities
demanding RL, the room for RL computation, and other issues. For example,
in a story heavy game like Halflife (Halflife 2008), it would not make much
sense for the same player to get smarter during the game course since it
would not be clear how knowledge would be passed on between enemies.

We choose the RTS game as the platform for online RL experiment and
propose several techniques for relieving specific constraints of RL implemen-
tation. We present a multi-layer (e.g. hierarchical levels) RL framework that
could offer tractable computation online. The top layer provides a general
tactic through a RL system while the low layer learns specific actions in the
game. In addition, we introduce a Profiler model into the multi-layer RL
framework. The Profiler identifies a type of opponents and then activates
the top level RL system to be configured with a new reward function. The
model is necessary since it would further optimize the policy and speed up
RL convergence in an early game stage.

We implement an RTS game called Tank General, where two armies (blue
and red) are fighting against each other in a middle-size map full of uncer-
tainty. We compare a basic RL technique, SARSA (Sutton and Barto 1998),

2

with a more sophisticated method, Q-learning (Watkins 1989), within the
proposed framework in the game. As expected, the Q-learning performs bet-
ter than the SARSA in the studied game. We show that the multi-layer RL
framework could effectively speed up RL computation and generate strategic
behaviors in the course of games.

The rest of this paper is organized as follows. In Section 2, we study
some of the important game genres in the light of online RL suitability. In
Section 3, we propose a multi-layer RL framework together with a Profiler
model. More importantly, in Section 4, we implement the Tank General
game and illustrate the application of the proposed framework. We convey
the experience on using online RL techniques in the test-bed. Finally, we
summarize the relevant works on applying RL in computer games and provide
remarks.

2 Game Genres: Online RL Suitability

We will discuss the currently most dominating genres in the computer game
industry and leave out some of the simple games like sidescrollers, puzzle
games and so on. We present relevant issues on using online RL and conclude
with game candidates that fit with online RL.

2.1 FPS - First Person Shooter

In a general FPS game many adversaries must be shot down or neutralized
by different means. This per default makes RL unattractive to be used since
most enemies have a short lifespan and are unable to pass on knowledge to
each other. A practical example would be the Rainbow Six series (Six 2008)
which present serial choices to scripted computer players with no need for
RL. The general FPS is also experienced as one long trek toward a rewarding
goal, which results in few data for RL. This makes FPS a poor choice to use
RL within due to the relative complexity of RL compared to the simple
scripted computer players.

One exceptional example is the very successful Counter-Strike game (Counter-
Strike 2008) which features human players fighting again bots or other human
players controlled by computers. Since the game structure is server-based the
bots would have a chance to learn and update the policy using RL after each
death. A smart bot would be able to adapt to individual players and also
learn general tactics. Hence in a FPS like Counter-Strike, RL fits nicely.

3

2.2 RTS - Real Time Strategy

The RTS genre has been popular since the dawn of the early PC strategy
games, spawning ground-breaking titles like Command and Conquer (Com-
mand and Conquer 2008) and Warcraft (Warcraft 2008), and continues to
thrill the game audiences by fast paced actions combined with tactical deci-
sions being made in a split second. Computer players in these games have
varied from plainly stupid, cheating and very predictable to clever, responsive
and challenging over the years.

The RTS game is often split into a campaign part and a skirmish part.
In the campaign part human players are playing a battle against computer
players with a lower or greater amount of units/buildings. In a skirmish
game both sides start on an equal size, and therefore the strategies to beat
the computer players depends much on players’ skills. It differs from the
campaign part where the strategies rely on a level setup in the game.

Using RL in the campaign part of an RTS game seems over-skilled and
is essentially not needed because computer players can be easily hard-coded
without being dull for human players to defeat. The skirmish part on the
other hand demands to have RL since the policy could be primed against
certain types of behaviors while still being improved after a single skirmish
game is ended. Some part of the policy table might also be updated dur-
ing the course of games. RL implementation seems quite difficult, but the
potential is certainly present.

2.3 TBS - Turn Based Strategy

Turn based games are traditionally divided into turns where only one player/opponent
is allowed to make decisions regarding his/her play. The turn offers RL to
have sufficient time to update policies and execute them. In the typical game
Civilization (Civilization 1991) RL residing in the top level could decide to
put a city near a certain resource, but the follow-up actions, such as creating
units, moving them to the spot and starting up cities, might challenge RL.
Some TBS games adopt simultaneous turns to make opponents act at the
same time as computer players, which turns the TBS almost into real time
movement. This structure allows little time to learn the policy, but would
not be impossible for RL use.

The TBS game structure gives RL opportunity to have reasonable time
to make up the policy; however, this must still be fast since players will not
be pleased with waiting for too long before they can take a new turn. In
general, RL is quite suitable in the TBS genre.

4

2.4 Sport

Two major genres are often featured in the sport game: simulation and man-
ager. Both genres would benefit greatly from RL awarding them with skilled
characters (players in the match). For the simulation game, RL could give
experience to individual characters in the form of improved policies which
tell characters how to put their skills to be the best use in the match. The
FIFA series (FIFA 2008) model behaviors from different characters without
having to hard-code them. The characters may improve their performance
during or after the match, which depends on RL implementation.

For the manager game, RL would learn the behavior of other managers
on owning teams like in the Football Manager series (Manager 2008), to help
players buy/sell characters and place them in correct positions in the match
and so on. This use of RL would occur in a high level for manager instead
of characters in the game. The manager game shares similar structures with
the TBS game by providing sufficient time to RL. Definitely, RL would bring
much interest to two sport game genres.

2.5 Adventure

Computer players in a conventional adventure game do not exist and hereby
RL is useless from the beginning. The example game Myst (Myst 2008) is
nothing more than a connected line of pretty pictures without any form of
computer intelligence. In the action adventure game featured by the highly
regarded game Diablo (Diablo2 2008) the small monsters and bosses may
own specific policies. Unfortunately, the policies may become completely
predictable since the limited behaviors of monsters and bosses refrain RL to
present interesting strategies. Here RL could be put in, but the benefit is
still very questionable.

2.6 Arcade

The arcade game industry is a growing branch recently due to the fact that
mobile phones and other hand-held devices have become more powerful than
ever. The general arcade game is fairly simple in nature and is quite successful
by being entertainment to player continuously. Perfect examples would be
Snake (Snake 2008), Tetris (Tetris 2008) and Pong (Pong 2008) all of which
are easy to start playing, but hard to be mastered. The high repeatability
of games is a suitable place to accommodate RL which may train computer
players to be adaptive. However, RL complexity and expensive computation
would be unacceptable by game developers for mobile devices.

5

2.7 RL Suitability

We study the suitability of online RL applications in different genres of com-
puter games and show that RTS, TBS and Sport games are prime candi-
dates for using RL. The other game genres do not accommodate the online
RL quite well due to the restriction of players’ behavior and computational
requirements of RL. As our interest we challenge online RL in RTS games.

3 Multi-layer RL Framework

We have seen that an RTS game is a sensible choice of game genre to make
online RL within. Similar to the normal use, RL can take place before ship-
ping off the game to the customers. However, it would be more interesting
and useful to have RL online and continue the learning even after the game
starts. The learning would allow computer players to be more adaptive to
the specific strategies of human players. We will discuss main issues regard-
ing online RL implementation in an RTS game. Our solutions will result in
a multi-layer RL framework together with a Profiler model.

3.1 Fast Learning

The learning must be fast, meaning that computer players must not seem
dumb during the first several games, and must quickly pick up some clues of
what human players are doing while playing the game. It may not consume
a large amount of processing power during or after a specific game turn since
this would annoy the players very much. Learning fast means learning from
a small amount of data, which is always problematic due to the huge margin
of variation in the limited data. The learning shall be able to recognize
relevant data and only use them to update the policy. The recognition is
general difficult especially in the early stage of games. One solution is to have
computer players create various profiles of opponents and provide a method
to identify a true type of the opponents . By knowing the opponent’s type,
computer players would learn counter-policies accordingly in a quick time.
Another solution is to let computer players take a general or decent policy
at the early stage of games and then gradually learn more specific behaviors.

3.2 Unit and Commander Level Policies

RL is able to generate and update policies which will adapt behaviors of
computer players to real-time actions of human players. The policies could
be placed into different parts of the order hierarchy. Their placement must

6

be considered carefully since the consequence can affect the game play in the
most profound way.

RL could be placed at the unit level so that an individual unit learns
from its surroundings. The learning would be wasted when the unit dies and
there is no knowledge sharing among units. A number of problems also arise
if units do not synchronize their actions with others. If one unit is going to
explore a certain area, it makes little sense that all other units are performing
the same task. On the other hand, the synchronization would result in the
deadlock problem since units are locked in decisions waiting for others to
take their decisions. A possible solution could combine the synchronization
with a central coordination mechanism.

A logical idea would be to make the units learn from each other by com-
bining policies or by other means sharing their knowledge. It could be applied
so that the units would pass on the accumulated knowledge to the new units
when they die themselves. This would make new units start with prior knowl-
edge about the game. However, the issue of data starving agent might occur
and there is a potential danger that the units will never live long enough to
learn anything useful.

RL placement at the commander level, being able to give orders to the
units and coordinate their actions, seems another alternative. The conse-
quence is that the commander RL would have to collect data from all units
and provide a single policy to units. The orders of a pure commander level
RL are very precise and the number of orders becomes extremely large. RL
would be asked almost instantly after each order. The constant queries put
much pressure on RL and the amount of data that RL would collect to gen-
erate policies may grow to be huge. Consequently, the commander RL may
lose a big picture on the game.

3.3 Our Solution

We consider policy learning at both the unit level and the commander level,
and provide a multi-layer RL framework in Fig. 1. The right side of the
framework represents a hierarchical RL system which moves from the learning
of a general strategy downward to the learning of specific behaviors. The top
level RL learns a general strategy which commands main activities of all units
in the current game stage. Under a general strategy, a specific RL system at
the low level is used for learning optimal actions that all units can execute
directly to counter opponents. Note that the framework could contain more
layers.

The left side of the framework, Profiler, offers a mechanism to identify
the opponent type given current game states. Subsequently, the Profiler

7

Low(Action) Level
RL System 1

Low(Action) Level
RL System ...

Low(Action) Level
RL System M

New Reward Function

Opponent
Type

Game
State 1

Game
State N

Figure 1: The multi-layer RL framework contains both the Profiler model
and RL in each level. The Profiler using Naive Bayesian model identifies the
player type and then provides an appropriate reward function that becomes
an input of RL in the top level. RL at the top level learns a general strategy
that triggers one of the low level RLs for learning more specific actions.

system proposes a corresponding reward function (predefined for each type
of opponents) to the top level RL on the right. We use Naive Bayesian
model (Geiger, Goldszmidt, Provan, Langley, and Smyth 1997) to classify
opponents’ type over time. The utility of using Naive Bayesian model to
identify players’ types is well studied in (Zeng and Doshi 2008). The pa-
rameters of Naive Bayesian model are learned from data which are collected
through the game and characterize the state of the game as well as opponents’
strategies in the history. Given a new observation on the current game state,
the opponent is classified into one of three conventional character types, such
as Aggressive, Defensive, or Resource player, in an RTS game.

The framework is a conversion of a single layer RL system by decomposing
a large state space of games and separating players’ general strategy from
specific behaviors. The net results generate a tractable state space for an
individual RL system, which avoids heavy computation online and speeds
up RL convergence in the early stage of the game play. Notice that we do
not specify any specific RL technique, like the SARSA or Q-learning, in RL
system. The framework is a general architecture which can accommodate
various RL methods and implement them in a different layer.

For a self-contained paper, we include both the SARSA and Q-learning
algorithms in Figs. 2 and 3 respectively. The Q-learning differs from the
SARSA by not using the action-value for the next state, but instead taking
the maximum value of actions. The theory study shows that the Q-learning
converges faster than the SARSA since it utilizes a greedy method for deter-
mining the action-value rather than selecting a random action with a certain

8

probability.

Initialize for all states s ∈ S and actions a ∈ A the value Q(s, a)
to a constant value

Repeat for each episode:
Initialize s
Choose a for s using the policy π
Repeat for each step in the episode, until s is terminal:

Execute action a and save reward r and next state s′

Choose a′ for s′ using π
Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s = s′ and a = a′

Figure 2: The SARSA calculates the Q-value for each non-terminal state
where α is the step-size parameter and γ the reward discount factor.

Initialize for all s ∈ S and a ∈ A the value Q(s, a) to a constant value
Repeat for each episode:

Initialize s
Repeat for each step in the episode, until s is terminal:

Choose a for s using π
Execute action a and save reward r and next state s′

Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
s = s′

Figure 3: The Q-learning updates the Q-value whenever action a is executed
in state s leading to new state s′.

4 Experimental Results

We implemented the RTS game Tank General and thoroughly tested the
proposed framework.

4.1 Game Description and Analysis

The game setting is a battlefield where two teams, referred as the blue army
and the red army respectively, are fighting against each other and aiming

9

Figure 4: The main frame shows units’ composition and locations of the
blue army in a small area of battlefield where one enemy unit from the red
army is intruding on the border of the fog of war. The bottom-left corner
records the unit statistic in both armies and the bottom-right corner presents
a mini-map. The mini-map zooms out the whole battlefield and exhibits the
location of the currently explored area(with the red rectangular frame). Users
can zoom in any area in the mini-map.

to destroy the headquarters of the other. Each team consists of five differ-
ent types of units which differ in both exploring ability and shooting power.
During the game each army may receive reinforcement points which would
be used to build new units or to repair the headquarter. The resources
called War Factory are randomly located in the battlefield. The occupied re-
source will give its owner more reinforcement points. In addition, to increase
the strategical elements in the game, we initialize the battlefield covered by
the fog of war. Both armies need to make strategic manoeuvres by send-
ing out scouting units to explore the unknown areas. Screen shots of the
Tank General game and final achievement screen are shown in Figs. 4 and 5
respectively.

We analyzed the Tank General game and got 20 unique attributes in the
game. Most of the attributes are around 2-3 values but up to 4 values, and
the combination results in an extremely large space (=181,395,528 states)
which is intractable in a single RL system. We divided the whole state space

10

Figure 5: The achievement screen summarizes various information and statis-
tic when the game is ended. The middle frame shows the power distribution
of both armies when the game is moving on. The bottom displays a time-
line on which major battles are plotted as a symbol of two crossed-swords.
A small headquarter symbol indicates being attacked while being destroyed
if there is a mushroom cloud on the top. A small symbol of blue (or red) war
factory shows the captured factory at the time.

into 5 components and built the multi-layer RL framework in Fig. 6.
Similar to opponent modeling in an RTS game, we consider three types

of opponents, Aggressive, Defensive and Resource, in the Profiler model.
Using Naive Bayesian model, the profile evaluation depends on relevant at-
tributes. For instance, the Aggressive profile would be evaluated regard-
ing the elements of NumberOfEnemyUnits, TotalShot, TimeWindow, and
AverageRateOfFire. When a certain opponent type is identified we change
the reward function in the top level RL.

The top level RL learns a general strategy among four: Explore, Defend,
Attack Headquarters, and Attack Resources. When the strategy is output
from the top level the corresponding low level RL is executed and learns
specific actions for units. For example, under the general strategy Explore,
the first RL system in the low level would be used to learn actions such as
BuildExploreUnit,ExploreRandomPosition, ExploreInfluenceMap and so on.
All state spaces, actions and reward values for each RL system are detailed

11

Low Level 1
Explore

Low Level 2
Defend

Low Level 3
Attack Headquarters

Low Level 4
Attack Resources

(Aggressive, Defensive
and Resource)

Figure 6: The multi-layer RL framework is provided in the Tank General
game.

in (Andersen, Christensen, Tra, and Buch 2008).
We implemented both the SARSA and the Q-learning in the RL system.

The parameter step-size is set to 1 since the Tank General is a non-stationary
game world where a high and constant value is appropriate to use. We chose
0.1 for a balance between exploitation and exploration actions. The discount
factor is set as 0.5 in the running.

To have a thorough test, we design two computer players: one uses the
multi-layer (or single-layer) RL framework, and the other adopts a script
and plays the game in a consistent manner. The scripted player could be
Aggressive type which attacks the enemy a lot, Defensive which is very
cautious and protective to headquarters, Resource which focuses on captur-
ing the resources. We have two computer players compete for 500 games and
compute the winning percentage for each 25 games following the chronolog-
ical order. All curves in Figs. 7,9 and 11 are the trend-lines of all winning
percentages (for 500 games) through a linear regression. A normal game
takes 9-25 minutes depending on players.

4.2 Test 1: SARSA versus Q-learning

The first test aims for a comparison between two RL techniques: the SARSA
and the Q-learning. As we expect (in Fig. 7) the computer game using the
RL does really better than the scripted player and the Q-learning technique
outperforms the SARSA, which verifies the online RL benefit and fast con-
vergence in the Q-learning. We will therefore use the Q-learning as the RL
technique in the subsequent tests. Notice that the computer player using
the SARSA has a surprisingly decreasing tendency when it plays against the
Aggressive scripted player (the top-left chart in Fig. 7). This may be due

12

to much randomness involved in the playing against the Aggressive scripted
player. In general, the game against the Aggressive player (average 9 min-
utes) is much shorter than that against Resource (average 25 minutes) as
shown in Fig. 8. The Aggressive type attacks its enemy as soon as it finds
the enemy headquarter and wins most of time; however, the headquarter
location is decided randomly when initializing the game.

(a)AggressiveP layer

 50

 55

 60

 65

 70

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Q-Learning
SARSA

(b)DefensiveP layer

 55

 60

 65

 70

 75

 80

 85

 90

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Q-Learning
SARSA

(c)ResourceP layer

 40

 45

 50

 55

 60

 65

 70

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Q-Learning
SARSA

Figure 7: The Q-learning performs slightly better than the SARSA where
the computer player using the multi-layer RL framework competes with a
scripted player of three types.

4.3 Test 2: Profiler versus Non-Profiler

The purpose of the second test is to demonstrate the Profiler would improve
the performance of RL in the Tank General game. Without the Profiler,
the top level RL uses a fixed reward function which is the same as the one
in a single layer RL framework. We show the results in Fig. 9.

We find that the multi-layer RL framework using the Profiler performs
clearly better against the Aggressive scripted player and slightly better
against Defensive. It seems that RL framework without the Profiler
achieves better performance in the third case (the bottom chart in Fig. 9).
The Resource player focuses on capturing all resources and defending for

13

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450 500

M
in

ut
es

 p
er

 G
am

e

Game(s)

Resource
Aggressive

Figure 8: Comparison of game time when the player using the multi-layer
RL framework plays against either the Aggressive or the Resource player.

(a)AggressiveP layer

 50

 55

 60

 65

 70

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Profiler
Non-Profiler

(b)DefensiveP layer

 55

 60

 65

 70

 75

 80

 85

 90

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Profiler
Non-Profiler

(c)ResourceP layer

 40

 45

 50

 55

 60

 65

 70

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Profiler
Non-Profiler

Figure 9: The Profiler model improves RL performance in the multi-layer
RL framework. Notice that the Profiler shows the benefit of modeling
opponents.

them while occasionally attacking its opponents. This demands the Profiler
to take some time to identify the correct player type in the early game stage.
We notice that RL using the Profiler steadily increases the winning chance
and performs equally well after 500 games. Overall we conclude that the
multi-layer RL framework gains benefit from the using of Profiler model.

14

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 V

is
its

State(s)

Figure 10: Some states are visited frequently while other states are never
visited.

4.4 Test 3: Multi-layer RL versus Single layer RL

The third test demonstrates the performance of the multi-layer RL framework
comparing with the traditional RL framework (single layer RL). The single
layer RL framework considers the whole state space together with all actions
in one RL system while the multi-layer RL decomposes the state space and
organizes individual RL systems into two levels in Fig. 6. Ideally the imple-
mentation of the single-layer RL system shall consist of all 181,395,528 states
in the Tank General game. However, the space is so huge that the learning
is extremely slow online. We therefore reduce the state space by filtering out
less relevant states that has been seldom approached in the game.

We played 500 games using the multi-layer RL framework and estimated
the frequency for which each state has been visited. It shows that in average
each state has been visited for 5.16 times. However, some states are much
more frequently approached than others. We show the distribution of visits
for a part of state space in Fig. 10. We removed the states that have a low
visit and kept only 16384 states. Consequently, we had a manageable state
space in the single-layer RL framework.

As the results (in Fig. 11) show that the single layer RL framework per-
forms quite poor compared with the multi-layer RL framework. It results
from the reduced state space even though we have a careful selection on the
relevant states. To make a further check, we found that the single layer RL
system does converge, but ends in non-optimal solutions due to insufficient
game information.

Instead of using the scripted players as the straw-man, we designed two
players which are equipped with the multi-layer RL framework and the single

15

(a)AggressiveP layer

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Multi-layer
Single layer

(b)DefensiveP layer

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Multi-layer
Single layer

(c)ResourceP layer

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500

W
in

ni
ng

 P
er

ce
nt

ag
e

Game(s)

Multi-layer
Single layer

Figure 11: The multi-layer RL framework achieves better performance than
the single layer one when both of them are used to compete against the
scripted players.

layer one respectively, and let them compete with each other. We arranged
20 sets of games each of which contains 25 individual games, and computed
the winning percentage for both players. In Fig. 12, the results are not
surprising that the player using the multi-layer RL won 355 out of 500 games
(71% winning rate).

5 Relevant Works

RL methods have been well studied in machine learning area where much
of work is invested into the theoretical aspect on either the performance im-
provement or the extension from a single agent case to a multi-agent case.
Good survey papers could be found in (Kaelbling, Littman, and Moore 1996;
Woergoetter and Porr 2008). Although RL techniques have been demon-
strated successfully in a classical board game (Tesauro 1994), computer game
applications are recently caught into the right track (Manslow 2004). The
major obstacle is the curse of dimensionality which makes RL be lacking of
efficiency. Recently, much effort appears to address the difficulty and shows

16

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

W
in

ni
ng

 P
er

ce
nt

ag
e

Game Set(s)

Multi-layer
Single layer

Figure 12: A direct war between the multi-layer RL framework and the single
layer RL. The player using the multi-layer RL framework wins most of games.

interesting results.
A concurrent hierarchical RL technique was used in the resource gathering

game - Stratagus where a group of units are working together for achieving
a common goal (Marthi, Russell, and Latham 2005). The proposed learn-
ing method adopts the multi-threaded partial program to effectively control
units’ actions and avoid the collision. In the GO game (Silver, Sutton, and
Müller 2007), David et al. proposed to reduce the state space by consider-
ing the combination of pieces instead of the entire board, which definitely
enhances RL performance. Furthermore, they discover location independent
states and boost RL convergence. For a more commercial application, Gus-
tavo et al. presented a dynamic game balancing method(on RL basis) to
activate computer players for adapting the skills of human players thereby
achieving more entertainment in games (Andrade, Ramalho, Santana, and
Corruble 2005). Our proposed multi-layer RL framework shows successful
experience in the RTS game and contributes to the growing lines of work on
using RL in computer games.

6 Conclusion

Computer games are a useful arena for RL application. We have provided
a broad survey on various game genres from the viewpoint of online RL
suitability. The study discovers difficulty on using online RL in computer
games. We choose RTS games for experimenting RL since the RTS involves
more computer-human interactions and demands more strategic behaviors.

One of the main difficulty on using RL is due to an intractable state space

17

in games. We propose a multi-layer RL framework by decomposing the large
state space and then building several small RL systems which reside in differ-
ent layers. The decomposition is not subjective, but distinguishes different
granularities of strategies which offer an appropriate mechanism for control-
ling units’ behaviors online. The Profiler enhances RL ability by providing
a suitable reward function according to the identification of opponents’ type
in time. We implement the Tank General game and experiment the proposed
framework across a large number of game competitions. The results verify the
strength of RL utilization in computer games, and empirically demonstrate
the capability of our proposed framework.

Future avenue of the Tank General game looks bright. We expect to
apply sophisticated opponent modeling approaches for developing a more
solid learning engine in an RTS game.

Acknowledgment

We would like to thank Anders Buch for participating in this project and
useful discussions on implementing the Tank General game.

References

Andersen, K. T., D. D. Christensen, D. Tran, and A. Buch (2008). Re-
inforcement Learning in RTS games. Master Thesis, Department of
Computer Science, Aalborg University, Denmark.

Andrade, G., G. Ramalho, H. Santana, and V. Corruble (2005). Auto-
matic computer game balancing: a reinforcement learning approach.
In Proceedings of International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1111–1112.

Civilization (1991). http://www.links.net/.

Command and Conquer (2008). http://www.commandandconquer.com/.

Counter-Strike (2008). http://store.steampowered.com/app/240/.

Diablo2 (2008). http://www.blizzard.com/us/diablo2/.

FIFA (2008). http://www.gamespot.com/.

Geiger, D., M. Goldszmidt, G. Provan, P. Langley, and P. Smyth (1997).
Bayesian network classifiers. In Machine Learning, pp. 131–163.

Halflife (2008). http://www.gamespot.com/.

18

Kaelbling, L. P., M. L. Littman, and A. W. Moore (1996). Reinforcement
learning: a survey. Journal of Artificial Intelligence Research 4, 237–
285.

Laird, J. E. and M. van Lent (2005). Machine learning for computer games.
In Game Developers Conference.

Manager, F. (2008). http://www.footballmanager.com/.

Manslow (2004). Using reinforcement learning to solve ai control problems.
AI Game Programming Wisdom 2 , 591–601.

Marthi, B., S. Russell, and D. Latham (2005). Concurrent hierarchical re-
inforcement learning. In Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI), pp. 779–785.

Myst (2008). http://www.mystworlds.com/us/.

Pong (2008). http://www.pong-story.com/.

Silver, D., R. Sutton, and M. Müller (2007). Reinforcement learning of
local shape in the game of Go. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI).

Six, R. (2008). http://www.redstorm.com/.

Snake (2008). http://www.snakegame.net/.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning - An Intro-
duction. The MIT Press.

Tesauro, G. (1994). Td-gammon, a self-teaching backgammon program,
achieves master-level play. Neural Comput. 6 (2), 215–219.

Tetris (2008). http://www.tetris.com/.

Warcraft (2008). http://www.blizzard.com/us/war3/.

Watkins (1989). Learning from Delayed Rewards. Cambridge University,
Cambridge, England.

Woergoetter, F. and B. Porr (2008). Reinforcement learning. Scholarpe-
dia 3, 1448.

Zeng, Y. and P. Doshi (2008). An information-theoretic approach to
model identification in interactive influence diagrams. In Proceedings of
IEEE/WIC/ACM International Conference on Intelligent Agent Tech-
nology (IAT), pp. 224–230.

19

