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Abstract—Time-critical dynamic decision making is a quite
challenging task in many real-world applications. It requires to
play a trade-off between solution optimality and computational
tractability. It is especially true for multiagent settings under
uncertainty. In this paper, we model time-critical dynamic de-
cision problem using the representation of interactive dynamic
influence diagram (I-DID). We formalize I-DID by providing
time-index to nodes within the model. This results in a model
that has the ability to represent space-temporal abstraction. In
addition, we propose a new method for selecting the abstract
model without arbitrarily compromising solution optimali ty.
We evaluate the performance of our method in two benchmark
settings and provide results in support.

Keywords-Interactive Dynamic Influence Diagram; Time-
Critical Decision Making; Model Abstraction

I. I NTRODUCTION

Many real-world applications demand actions to be taken
in a time pressured situations. A decision maker is expected
to take a proper amount of time in the modeling and solution
so that he/she is allowed to have sufficient time for really
executing the actions. This is a trade-off between model
quality and computational tractability. A complete model
may provide exact solutions while it consumes a large
amount of time for compilation and execution.

Much research has been seen, mainly on a single-agent
setting, about addressing time-critical dynamic decision
problems [1], [2], [3]. In particular, Xiang and Poh [2], [4]
proposed a formal representation of time-critical dynamicin-
fluence diagrams that provide explicit support for modeling
temporal processes and dealing with time-critical situations.
Their work is applicable in a single-agent decision domain.
The issue becomes more complicated when a multiagent
setting is considered since multiple agents may interact with
each other over time. It involves the complicated modeling
process and solutions. For example, a team of rescue agents
expect to take a fast collaboration in a natural disaster while
their decisions shall be made with the consideration of all
other agents in the team.

In this paper, we utilize the language ofinteractive dy-
namic influence diagrams(I-DIDs) [5] to study time-critical
dynamic decision making in multiagent settings. I-DID
provides an efficient representation for modeling sequential
multiagent decision making in an uncertain environment. It

stands on the viewpoint of an individual agent and explicitly
models other agents into the subject agent’s state space. In
this way, I-DID generalizes dynamic influence diagrams to
multiagent settings and resorts to many standard solutions
of probabilistic graphical models [6].

One important aspect of time-critical decision analysis is
the framing and formulation of the decision problem, which
requires the modeling of temporal process in an explicit way.
Following the same vein as time-critical dynamic influence
diagrams [2], we further formalize I-DIDs into time-critical
I-DIDs by providing time index to each node in the model.
This offers a possibility to represent temporal relations of
the underlying random variables. We propose two forms of
time-critical I-DIDs: thecondensedform and thedeployed
form. The condensed form provides a static model of time-
critical I-DIDs and is transformed to the deployed form in a
dynamic process. The deployed form is the final time-critical
I-DID model that will be compiled and solved for seeking
optimal time-critical policies.

As expansion in I-DID, the transformation from the con-
densed form to the deployed form is a complicated process
and may result in a computationally intractable time-critical
I-DID model. We need to find a proper way to specify the
condensed form so that the deployed form becomes more
abstract; meanwhile, the reduction shall not have a serious
impact on the model solution. In doing so, we may try all
possible condensed forms and select the one by transforming
that would approximate the model solution within a cer-
tain accuracy. This greedy selection has to consume much
computation,which may not be allowed in a time pressured
situation. We propose an entropy-based method to select
a condensed form. The new method may further reduce
the solution error while it is computationally cheap. We
formalize the selection strategy and experimentally evaluate
the performance of our method. We show the approach may
elicit the condensed form efficiently and really strengthen
the utilization of time-critical I-DIDs in dynamic decision
making.

The rest of this paper is organized as follows. In Sec-
tion II, we review necessary background knowledge on I-
DIDs. In Section III, we propose both the condensed and
deployed forms of time-critical I-DIDs. More importantly,



in Section IV, we implement the entropy-based method
for selecting a proper condensed form. We conduct the
experiment and show positive results on two well-studied
domains in Section V. Finally, we discuss relevant works
and conclude the paper with remarks.

II. BACKGROUND: INTERACTIVE DIDS

We briefly describe interactive influence diagrams (I-IDs)
for two-agent interactions followed by their extensions to
dynamic settings, I-DIDs, and refer the reader to [5] for
more details.

A. Syntax

In addition to the usual chance, decision, and utility nodes,
I-IDs include a new type of node called themodel node
(hexagonal node,Mj,l−1, in Fig. 1(a)). The probability
distribution over the chance node,S, and the model node
together represents agenti’s belief over itsinteractive state
space. In addition to the model node, I-IDs differ from IDs
by having a chance node,Aj , that represents the distribution
over other agent’s actions, and a dashed link, called apolicy
link.
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Figure 1. (a) A generic levell > 0 I-ID for agenti situated with one other
agentj. The hexagon is the model node (Mj,l−1) and the dashed arrow
is the policy link. (b) Representing the model node and policy link using
chance nodes and dependencies between them. The decision nodes of the
lower-level I-IDs or IDs (m1

j,l−1, m2
j,l−1) are mapped to the corresponding

chance nodes (A1
j , A2

j ), which is indicated by the dotted arrows.

The model node contains as its values the alternative
computational models ascribed byi to the other agent. We
denote the set of these models byMj,l−1. A model in the
model node may itself be an I-ID or ID, and the recursion
terminates when a model is an ID or a simple probability
distribution over the actions. Formally, we denote a model
of j as, mj,l−1 = 〈bj,l−1, θ̂j〉, where bj,l−1 is the level
l − 1 belief, andθ̂j is the agent’sframe encompassing the
action, observation, and utility nodes. We observe that the
model node and the dashed policy link that connects it to
the chance node,Aj , could be represented as shown in
Fig. 1(b). The decision node of each levell − 1 I-ID is
transformed into a chance node. Specifically, ifOPT is the
set of optimal actions obtained by solving the I-ID (or ID),
thenPr(aj ∈ A1

j) = 1

|OPT | if aj ∈ OPT , 0 otherwise. The

conditional probability table (CPT) of the chance node,Aj ,
is a multiplexer, that assumes the distribution of each of the
action nodes (A1

j , A
2
j ) depending on the value ofMod[Mj].

In other words, whenMod[Mj ] has the valuem1
j,l−1

, the
chance nodeAj assumes the distribution of the nodeA1

j , and
Aj assumes the distribution ofA2

j whenMod[Mj] has the
valuem2

j,l−1
. The distribution overMod[Mj], is i’s belief

over j’s models given the state. For more than two agents,
we add a model node and a chance node representing the
distribution over an agent’s action linked together using a
policy link, for each other agent.

S
t

Oi
t

Ai
t

Ri

S
t+1

Oi
t+1

Ai
t+1

Ri

Mj,l-1
t

Aj
t

Mj,l-1
t+1

Aj
t+1

Figure 2. A generic two time-slice levell I-DID for agenti. Notice
the dotted model update link that denotes the update of the models
of j and of the distribution over the models, over time.

I-DIDs extend I-IDs to allow sequential decision making
over several time steps. We depict a general two time-slice I-
DID in Fig. 2. In addition to the model nodes and the dashed
policy link, what differentiates an I-DID from a DID is the
model update linkshown as a dotted arrow in Fig. 2. We
briefly explain the semantics of the model update next.
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Figure 3. The semantics of the model update link. Notice the growth in
the number of models in the model node att + 1 in bold.

The update of the model node over time involves two
steps: First, given the models at timet, we identify the
updated set of models that reside in the model node at
time t + 1. Because the agents act and receive observations,
their models are updated to reflect their changed beliefs.
Since the set of optimal actions for a model could include
all the actions, and the agent may receive any one of|Ωj |
possible observations, the updated set at time stept + 1
will have up to |Mt

j,l−1
||Aj ||Ωj | models. Here,|Mt

j,l−1
|

is the number of models at time stept, |Aj | and |Ωj | are



the largest spaces of actions and observations respectively,
among all the models. The CPT ofMod[M t+1

j,l−1
] encodes

the function, τ(bt
j,l−1

, at
j, o

t+1

j , bt+1

j,l−1
) which is 1 if the

belief bt
j,l−1

in the modelmt
j,l−1

using the actionat
j and

observationot+1

j updates tobt+1

j,l−1
in a model mt+1

j,l−1
;

otherwise it is 0. Second, we compute the new distribution
over the updated models, given the original distribution
and the probability of the agent performing the action and
receiving the observation that led to the updated model. The
dotted model update link in the I-DID may be implemented
using standard dependency links and chance nodes, as in
Fig. 3, transforming it into a flat DID.

B. Solution

The solution of an I-DID (and I-ID) proceeds in a bottom-
up manner, and is implemented recursively as shown in
Fig. 4. We start by solving the level 0 models, which may be
traditional DIDs. Their solutions provide probability distri-
butions which are entered in the corresponding action nodes
found in the model node of the level 1 I-DID. The solution
method uses the standard look-ahead technique, projecting
the agent’s action and observation sequences forward from
the current belief state, and finding the possible beliefs that
i could have in the next time step. Because agenti has
a belief overj’s models as well, the look-ahead includes
finding out the possible models thatj could have in the
future. Consequently, each ofj’s level 0 models represented
using a standard DID in the first time step must be solved to
obtain its optimal set of actions. These actions are combined
with the set of possible observations thatj could make in
that model, resulting in an updated set of candidate models
(that include the updated beliefs) that could describe the
behavior ofj. SE(bt

j, aj , oj) is an abbreviation for the belief
update. Beliefs over these updated set of candidate models
are calculated using the standard inference methods through
the dependency links between the model nodes (Fig. 3). We
point out that the algorithm in Fig. 4 may be realized using
the standard implementations of DIDs.

III. T IME-CRITICAL I-DID S

Time-critical I-DIDs extend I-DIDs to time-critical de-
cision making analogously to how time-critical dynamic
influence diagrams extend DIDs. We start with the proposal
of the condensed form of time-critical I-DIDs.

A. The Condensed Form

The condensed form of time-critical I-DIDs serves as a
static model of time-critical multiagent sequential decision
making. We may formalize I-IDs to be the condensed form
of time-critical I-DIDs. We show an example of time-critical
I-IDs in Fig. 5.

Additional arcs (long dashedones) are called temporal
arcs in time-critical I-IDs and represent both probabilistic

I-DID E XACT (level l ≥ 1 I-DID or level 0 DID, T )
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

PopulateM t+1
j,l−1

3. For each mt
j in Mt

j,l−1 do
4. Recursively call algorithm with thel − 1

I-DID (or DID) that representsmt
j

and the horizon,T − t
5. Map the decision node of the solved I-DID

(or DID) OPT (mt
j), to the chance nodeAt

j

6. For each aj in OPT (mt
j) do

7. For each oj in Oj (part of mt
j) do

8. Updatej’s belief, bt+1
j ← SE(bt

j , aj , oj)

9. mt+1
j ← New I-DID (or DID) with bt+1

j

as init. belief
10. Mt+1

j,l−1

∪

← {mt+1
j }

11. Add the model node,M t+1
j,l−1, and the model

update link betweenM t
j,l−1 andM t+1

j,l−1

12. Add the chance, decision, and utility nodes fort + 1
time slice and the dependency links between them

13. Establish the CPTs for each chance node and utility node

Solution Phase
14. If l ≥ 1 then
15. Represent the model nodes and the model update link

as in Fig. 3 to obtain the DID
16. Apply the standard look-ahead and backup method

(or other approaches)to solve the expanded DID

Figure 4. Algorithm for exactly solving a levell ≥ 1 I-DID or level 0
DID expanded overT time steps.
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Figure 5. Time-critical I-IDs (the condensed form of time-critical I-DIDs).
Nodes are indexed with a time sequence while long dashed arcsdenote
temporal relations.
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Figure 6. Time-critical model node in which two models,m1
j and m2

j ,
have different sub-time sequences< 1, 3 > and< 1, 2 > respectively.

and temporal (time-lag) relations between nodes. We also
index nodes with a time sequence (numbers in a angle
bracket) and the set of time indices may be different from
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Figure 7. Time-critical I-DIDs (the deployed form) resulted from the transformation of the condensed form in Fig. 5. Nodes with a double circle are
deterministic nodes.

one node to another. The longest sequence is called a
master time sequence (mts) while others shall be a sub-
time sequence (sts) that is a subset of the master time
sequence. To avoid cumbersome denotations, we may not
index nodes whose time sequence is equivalent to the master
time sequence. For example, the master sequence of time-
critical I-ID in Fig. 5 is< 1, 2, 3 > indexed to chance nodes
S, Aj andOi. Decision nodeAi and utility nodeRi share
the master time sequence and the model nodeMj,l−1 has
the sub-time sequence< 1, 3 >. The time sequence will be
later utilized to expand time-critical I-IDs into time-critical
I-DIDs.

Recall that the model node contains all candidate models
of other agents. Those models may be abstracted in a
different way - they may have different condensed forms.
This requires to index each model with a unique time
sequence in the model node. Consequently, we must attach a
list of time sequences to the model node and each model is
associated with a time sequence. Formally, letm

k,sts
j be the

condensed form of modelmk
j wheremk

j is indexed by a sub-
time sequencests. Assume that agentj has two candidate
models, we show one example of indexed model node in
Fig. 6. In this case,sts for modelm1

j is equal to the sub-
time sequence< 1, 3 > while it is < 1, 2 > for m2

j . We
may also index the model node using a single time sequence
if all models share the same time sequence. This is exactly
the case for the model node in Fig. 5 where all models have
the sub-time sequence< 1, 3 >.

We notice that the candidate model indexed by a sub-time
sequence has a shorter time horizon than the models with the
master time sequence. In other words, the subject agenti is
envisioned to suppose the bounded rationality of other agent
j. Agent j may take actions of fewer time steps and play
an intervention only at the indexed times. For instance, in
Fig. 6,m1

j is the model of 2 time horizons, and the solutions
arej’s actions only at timest = 1 and t = 3.

B. The Deployed Form

The deployed form of time-critical I-DID is the expansion
of time-critical I-ID (the condensed form of time-critical
I-DID). We transform the time-critical I-ID (in Fig. 5) to
the deployed form in Fig. 7. The transformation expands
the time-critical I-IDs similarly to the expansion phase for
I-DIDs in Fig. 4. However,it must rely on various time
sequences indexed to relevant nodes. We repeat a normal
node (except the model node) only if its time sequence
is equivalent to the master time sequence; otherwise, the
node will be casted into a deterministic node (which is
deterministically dependent on its parent nodes) for the time
step where the time is not indexed in the time sequence.

For the model node, we update the model only at the
time step if the time is indexed in the time sequence to
the model inside the model node. Otherwise, we retain all
models from the previous time step and do not perform
any model update - we also mark the model node using
the type of deterministic nodes. Recall that the model with
a sub-time sequence has a shorter time horizon. There is
no solutions (actions performed by other agents) from the
model at a particular time step which is not indexed in the
time sequence. For facilitating the CPT setting of action
nodeAj (in Fig. 1), we assume a uniform distribution of
actions from the model, e.g. assigning the probability1|Aj|

to the columns corresponding to the model.
Consequently, we need to modify lines 4-10 in Fig. 4 and

may expand time-critical I-IDs in a different way. Lines 4-
10 are only followed if the current time stept is equivalent
to the time index in the time sequence attached to model
mt

j . Otherwise, we do not need to updatemt
j , but assign a

uniform distribution 1

|Aj |
to chance nodeAt

j for columns of
modelmt

j.
We expand the time-critical I-ID of Fig. 5 and get the

deployed form of time-critical I-DID in Fig. 7. We observe
the model node at timet = 2, M2

j,l−1
, is deterministically

dependent onM1
j,l−1

. In other words, the set of lower level’s



models do not change when the model node is expanded
at t = 2. In addition, CPTs of nodeA2

j have a uniform
distribution.

C. Discussion

Time-critical I-IDs serve as the condensed form of time-
critical I-DIDs while the deployed form is the expansion of
the time-critical I-IDs. Converting the condensed form to
the deployed form is similar to the expansion from I-IDs
to I-DIDs. The complexity still relies on the model update
where the number of candidate models ascribed to other
agents grows exponentially over time. On the other hand,
the conversion depends on the condensed form in which the
time sequence indexed to the mode node has determined
the complexity of lower level’s models and manipulates the
model growth1. For example, in Fig. 7, we do not need
to expand the models from timet = 1 to t = 2 and the
model space does not increase att = 2. This results in a
time-critical I-DID computationally cheap compared to the
I-DID with all expanded models in every time step.

It is evident that the condensed form for the model node
may reduce the complexity of model expansion. This makes
time-critical I-DIDs tractable on the solutions. Meanwhile,
the conversion may compromise the solution quality since
we use the abstract models, instead of complete models,
at the lower level. Hence it is quite critical to prepare the
condensed form of time-critical I-IDs in a proper way. We
shall handle this issue in the next section.

IV. SELECTION OFTIME-CRITICAL I-ID S

We proceed to build the appropriate condensed form by
converting which would not incur much damage to the
solutions of time-critical I-DIDs. Essentially, we need to
index the model node with a suitable sub-time sequence in
time-critical I-IDs.

A. Greedy Selection

We may build the condensed form by indexing a random
sub-time sequence to the model node. By doing this it
is unknown to the solution quality of the converted time-
critical I-DIDs comparing to the I-DIDs that results from
the expansion of the model node indexed by the master
time sequence. We need a way to measure the impact of
the condensed form on time-critical I-DID solutions when
it is converted.

We follow the concept of behavioral equivalence [7]
that quantifies the influence of other agentj’s models (at
a low level) on solutions of agenti’s I-DIDs. Muthu et.
al. [7] state: Two models of agentj, mj and m̂j , are
ǫ-behavioral equivalence if the probability distributionsof

1We agree that the complexity is also relevant to the time sequence
indexed to other nodes. Currently, we focus on the condensedform of the
model node since model expansion has more impact on time-critical I-DIDs
as it does for normal I-DIDs.

agent i’s action-observation paths induced byj’s models,
Prmj

(AT
i , OT

i , · · · , A1
i ) andPrm̂j

(AT
i , OT

i , · · · , A1
i ), have

the distance ofǫ measured by the Kullback-Leibler diver-
gence (KL) [8]. The error of agenti’s expected values (I-
DID solutions) is bounded by(Rmax

i −Rmin
i )T ×2ǫ, where

T is the time horizon of I-DIDs andRmax
i (Rmin

i ) is the
agent i’s maximum (minimum) immediate reward, if an
ǫ-behavioral equivalence model is pruned from the model
node. More details refer to [7].

Following the same vein, we may defineǫ-behavioral
equivalence between two condensed forms of agentj’s
models, mmts

j and msts
j , that are indexed by a master

time sequence and a sub-time sequence respectively. Recall
that mmts

j is the complete model of time-critical I-IDs that
expands the model node at every time step. Subsequently
we may limit the solution error by(Rmax

i − Rmin
i )T × 2ǫ

if we selectmsts
j that has at mostǫ distance frommmts

j .
Here the distance is the KL divergence between the prob-
ability distributions ofi’s action-observation paths induced
by mmts

j and msts
j respectively. Appropriate usage will be

self-evident in the rest of this paper.
Having the quantitative measurement, we are able to

perform a greedy selection of the best condensed form for
model mj . The optimal way is to select the one,msts

j ,
that has theleastdistance from the condensed form,mmts

j ,
indexed by a master sequence . To achieve this, we need
to list all of the condensed formsmsts

j for modelmj , and
compare each of them tommts

j . For aT -time horizon model,
the number of all condensed forms is2T − 1. Recall that
the computation ofPrmj

(AT
i , OT

i , · · · , A1
i ) is very time-

consuming in the comparison [7]. Meanwhile, the selection
will be applied to all modelsMj in the model node.
Consequently, the greedy selection would become intractable
- choosing the optimalmsts

j for all models.

B. Entropy-based Selection

The condensed form is an abstract model of I-ID since its
conversion may not expand/update other agents’ models in
every time step. Recall that other agents are supposed to take
a random action for the particular time that is not indexed
in the condensed form. An arbitrary selection may cause
all models to be indexed with the same sub-time sequence.
This results in completely unknown actions of other agents
at some particular steps, which may incur much loss to the
solution quality. Hence we need a strategic selection of the
condensed form for all models in the model node.

To limit the solution error, we may consider only a subset
of condensed forms that have at mostǫ distance frommmts

j .
We expect to avoid the case that all agentj’s models select
the same condensed form from the subset. Towards this
insight, we propose an entropy-based method to measure
the diversity of the condensed forms of all models in the
selection. We take a Shannon based definition of information
entropy that quantifies the information uncertainty [9].



Let {sts1, sts2, · · · , stsN} be sub-time sequences forN

agentj’s models of the condensed form. We may cluster the
same sub-time sequence into a class,ci, and getK classes of
sub-time sequences. Formally, the diversity of the condensed
forms for N models is calculated in Eq. 1.

EP = −{ |c1|
N

ln
|c1|
N

+ · · · + |cK|
N

ln
|cK|
N

}

= −
∑K

i=1

|ci|
N

ln
|ci|
N

(1)

where|ci| is the cardinality of theith’s classci.
Eq. 1 offers us a quantitative selection when we are facing

multiple condensed forms of modelmj and all of them
are within at mostǫ distance frommmts

j . We may choose
the one that would increase the current diversity of the
condensed forms. This may prevent the condensed forms
from running into a single type. We formalize the entropy-
based selection in Fig. 8.

ENTROPY-BASED SELECTION (Model setMj , I-ID mi, ǫ)
returns Condensed formCF (Mj)
1. While Mj not empty
2. Prepare the condensed form with the master time

sequence,mk,mts
j , for a model,mk

j ∈ Mj

3. Compute the probability distributionsPr
m

k,mts
j

(·) a

by calling Get-Probability(mk,mts

j ,mi)
4. Repeat
5. Select the condensed formm

k,stsq

j for
the modelmk

j

6. Compute the probability distributionsPr
m

k,stsq
j

(·) b

by calling Get-Probability(mk,stsq

j ,mi)
7. If DKL(Pr

m
k,mts
j

(·)||Pr
m

k,stsq
j

(·)) ≤ ǫ

8. Compute the diversity of the condensed
forms EPk,q in Eq. 1

9. If EPk,q−1 ≤ EPk,q

10. CF (Mj)
+
← m

k,stsq

j , Mj
−

← mk
j

11. While EPk,q−1 ≤ EPk,q

12. ReturnCF (Mj)

GET-PROBABILITY (mj ,I-ID mi)
returns Pr(AT

i , OT
i , · · · , A1

i )
1. Convert the condensed form of I-ID,mi, to

the deployed form using the modelmj

2. Transform the deployed form (DID) into dynamic
Bayesian networks by replacingi’s decision nodes with

chance nodes having uniform distribution
3. Compute the distributionPr(AT

i , OT
i , · · · , A1

i )
from the dynamic Bayesian networks inference

aPr
m

k,mts
j

(·) refers toPr
m

k,mts
j

(AT
i , OT

i , · · · , A1
i )

bPr
m

k,sts
j

(·) refers toPr
m

k,sts
j

(AT
i , OT

i , · · · , A1
i )

Figure 8. Algorithm for selecting the condensed form for each
j ’s model mk

j using the entropy-based method. The functionGet-
Probability( mj ,mi) computes the probability distributions oni’s action-
observation paths [7] whenmj is expanded inmi.

The algorithm aims to prepare the model set,CF (Mj),
in which each model has a suitable condensed formm

k,sts
j

using the entropy-based selection. We firstly compute the
probability distributions of agenti’s action-observation paths
by expanding only the complete modelm

k,mts
j in I-ID (lines

2-3). The probability distributions are exact values since
the model,mk,mts

j indexed by the master time sequence,
exactly expands all model node overT time steps. The
values provide a benchmark for measuring the condensed
forms with sub-time sequences in the selection. Similarly,
we obtain the probability distributions when one condensed
form, m

k,stsq

j , is selected to be included inmi (lines 5-6).
After that, we compute the KL distance,DKL(·) 2, between
the distributions induced by the two models (line 7). If the
distance is withinǫ range we further check whether by
including the sub-time sequencestsq (indexed tom

k,stsq

j )
would increase the diversity of the condensed forms at
the current time (lines 7-9). We select the condensed form
m

k,stsq

j if the diversity is increased (lines 9-10); otherwise,
we take a new selection of the condensed form for the model
mk

j . In the worst case, we have to iterate all condensed forms
of mk

j . We select the condensed form that has the least
distance,DKL(·), from m

k,mts
j if none of the condensed

forms increases the diversity.
In summary, the entropy-based selection still bounds the

solution error by(Rmax
i − Rmin

i )T × 2ǫ, and may further
reduce the actual error by providing a large diversity of the
condensed forms inMj . It may gain much efficiency in
comparison to the greedy selection.

V. EXPERIMENTAL RESULTS

We implemented both the greedy selection (GS) and the
entropy-based algorithm (ES), and empirically demonstrate
the time-critical I-DIDs (singly nested) on two well-studied
domains: the multi-agent tiger [10] and a multi-agent version
of the machine maintenance problem [11]. We show that
the performance of ES algorithm (with differentǫ values)
approaches GS performance regarding the solution quality
of the time-critical I-DIDs. We compare to an exact method
that actually indexes the master sequence to allj models
and expand them exactly at each time step. The exact one
serves as an optimal solution of I-DIDs. More importantly,
we demonstrate that ES achieves much efficiency indicated
by the low run times.

We select the condensed form ofj’s models through either
GS or ES method. By includingj’s models, we convert the
condensed form ofi’s I-IDs to the deployed form of time-
critical I-DIDs. We computei’s optimal policies and play
with agentj. In Figs. 9 and 10, we show the average rewards
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Figure 9. Performance profile obtained by solving a level 1 time-critical I-DID for the multiagent tiger problem using both the greedy and entropy-based
selections for(a) 4 horizons and(b) 5 horizons. The performance of ES selection approaches the GS while solution errors are bounded for both methods.
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Figure 10. Performance profile obtained by solving a level 1 time-critical I-DID for the multiagent machine maintenanceproblem using both the greedy
and entropy-based selections for(a) 3 horizons and(b) 4 horizons.

gathered by executing the policies obtained from solving the
I-DIDs. We test all methods across different numbers ofj’s
models (|Mj |). Each data point here is the average of 30
runs where the true model of the other agent,j, is randomly
picked according toi’s belief distribution overj’s models.

We observe that the performance of both GS and ES
selections are quite close to the performance of the exact
method on the solution quality. Recall that the GS selection
results in the optimal time-critical I-DIDs that has the least
distance from the exact I-DIDs. Hence it is evident that
time-critical I-DIDs really upset the solution quality, but do
not incur much loss if the condensed form is appropriately
selected. The performance of ES selection approaches ES
and becomes better whenǫ is reduced. This is true for
different sets ofj’s models on both problem domains.

Finally, we show the efficiency of ES selection measured
by run times (seconds) in Table I. We ran 25 initial models
of agent j in time-critical I-DIDs, and set 0 .005 and
0.0005 to ǫ values for the multiagent tiger and machine
maintenance (MM) domains respectively. The ES selection
achieves significantly lower run times in comparison to the
GS. This may make time-critical I-DIDs more applicable in
the real problem.

Level 1 T Time (s)
GS ES

Tiger 4 87.176 26.287
5 188.973 67.245

MM 3 41.213 14.86
4 122.897 33.158

Table I
COMPARISON OF RUN TIMES. ALL EXPERIMENTS ARE RUN ON A

WINXP PLATFORM WITH A DUAL PROCESSORXEON 2.0GHZ WITH

2GB MEMORY.

VI. RELATED WORKS

Timely action is often critical on facing rapid changes in
the real world. The time-critical dynamic decision problem
is to decide or select a course of actions that satisfies
some objective in an environment under time constraints.
Normative methods have been used to formalize time-critical
decision problems in dynamic decision making systems
e.g. Bayesian networks and influence diagrams [12]. Xi-
ang and Poh [2], [4] proposed time-critical dynamic influ-
ence diagrams for the modelling of time and dealing with
time-pressured situations to develop time-critical dynamic
decision-support systems. Their work has been successfully
applied to medical decision systems e.g. dynamic decision
making for the treatment of cardiac arrest. Tseng and Gmy-



trasiewicz [13] studied real-time actions in recommendation
systems through the development of informative influence
diagrams. Meanwhile, Noh and Gmytrasiewicz [14] inves-
tigated time-critical multiagent decision making in the re-
cursive modeling framework. They use performance profile
to determine the appropriate scope of modeling, mainly on
nested levels, and provide experimental results on an anti-air
defense domain.

Interactive dynamic influence diagram contributes to a
growing line of work on sequential multiagent decision mak-
ing that extends the static single play games to multiagent
interactive domain [5]. It explicitly models how other agents
behave in a real time and provides online solutions for the
subject agent. Due to its interactive state space that contains
both the physical states and other agents’ models, the
solutions become extremely complicated. Several effective
methods have been proposed mainly to limit an exponential
growth of models over time [5], [15]. Extending interactive
dynamic influence diagram for time-critical decision making
would face more challenge. In principle, solutions follow
two types of schemes: One is to explicitly encode time as
one factor into a utility function of model and then maximize
the utilities. The other is to maintain the utility form and then
propose fast solutions of limited quality. This paper provides
a solution of the second type.

VII. C ONCLUSION

We propose a representation of time-critical I-DIDs. The
representation contains the condensed form - time-critical I-
IDs - and the deployed form that is time-critical I-DIDs and
provides online solutions to the subject agent. The deployed
form is converted from the condensed form similarly to the
expansion of I-IDs to I-DIDs. The transformation faces the
trade-off between model tractability and solution quality.
We propose an entropy-based method for selecting the
condensed form by including it would limit the solution error
of time-critical I-DIDs and meanwhile increases the diversity
of the condensed forms. Consequently, the method avoids a
greedy selection of the condensed form for time-critical I-
IDs and achieves significant computational savings on the
solutions. Currently, we are exploring a more efficient im-
plementation of time-critical I-DIDs using meta-reasoning.
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