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Abstract—Time-critical dynamic decision making is a quite  stands on the viewpoint of an individual agent and expjicit|
challenging task in many real-world applications. It requiresto  models other agents into the subject agent’s state space. In
play a trade-off between solution optimality and computatonal this way, 1-DID generalizes dynamic influence diagrams to

tractability. It is especially true for multiagent settings under . . .
uncertainty. In this paper, we model time-critical dynamic de- multiagent settings and resorts to many standard solutions

cision problem using the representation of interactive dyamic ~ Of probabilistic graphical models [6].

influence diagram (I-DID). We formalize I-DID by providing One important aspect of time-critical decision analysis is
time-index to nodes within the model. This results in a model  the framing and formulation of the decision pr0b|em, which
that has the ability to represent space-temporal abstractin. In requires the modeling of temporal process in an explicit way

addition, we propose a new method for selecting the abstract Following th - fi itical d ic infl
model without arbitrarily compromising solution optimali ty. ofiowing the same vein as tme-criical dynamic infiuence

We evaluate the performance of our method in two benchmark ~ diagrams [2], we further formalize I-DIDs into time-criéic

settings and provide results in support. I-DIDs by providing time index to each node in the model.

Keywords-Interactive Dynamic Influence Diagram; Time- This offers a possibility to_ represent temporal relatiofis o

Critical Decision Making; Model Abstraction the underlying random variables. We propose two forms of
time-critical 1-DIDs: thecondensedorm and thedeployed

|. INTRODUCTION form. The condensed form provides a static model of time-

Many real-world applications demand actions to be takercritical I-DIDs and is transformed to the deployed form in a
in a time pressured situations. A decision maker is expectedynamic process. The deployed form is the final time-ciiitica
to take a proper amount of time in the modeling and solutior-DID model that will be compiled and solved for seeking
so that he/she is allowed to have sufficient time for reallyoptimal time-critical policies.
executing the actions. This is a trade-off between model As expansion in I-DID, the transformation from the con-
quality and computational tractability. A complete model densed form to the deployed form is a complicated process
may provide exact solutions while it consumes a largeand may result in a computationally intractable time-caiti
amount of time for compilation and execution. I-DID model. We need to find a proper way to specify the

Much research has been seen, mainly on a single-agenbndensed form so that the deployed form becomes more
setting, about addressing time-critical dynamic decisiorabstract; meanwhile, the reduction shall not have a serious
problems [1], [2], [3]. In particular, Xiang and Poh [2], [4] impact on the model solution. In doing so, we may try all
proposed a formal representation of time-critical dynaimic  possible condensed forms and select the one by transforming
fluence diagrams that provide explicit support for modelingthat would approximate the model solution within a cer-
temporal processes and dealing with time-critical siarai  tain accuracy. This greedy selection has to consume much
Their work is applicable in a single-agent decision domaincomputation,which may not be allowed in a time pressured
The issue becomes more complicated when a multiagersituation. We propose an entropy-based method to select
setting is considered since multiple agents may interattt wi a condensed form. The new method may further reduce
each other over time. It involves the complicated modelingthe solution error while it is computationally cheap. We
process and solutions. For example, a team of rescue ageritgmalize the selection strategy and experimentally eatalu
expect to take a fast collaboration in a natural disastelewhi the performance of our method. We show the approach may
their decisions shall be made with the consideration of alklicit the condensed form efficiently and really strengthen

other agents in the team. the utilization of time-critical 1-DIDs in dynamic decisio
In this paper, we utilize the language mteractive dy- making.
namic influence diagram@-DIDs) [5] to study time-critical The rest of this paper is organized as follows. In Sec-

dynamic decision making in multiagent settings. I-DID tion II, we review necessary background knowledge on I-
provides an efficient representation for modeling segaénti DIDs. In Section Ill, we propose both the condensed and
multiagent decision making in an uncertain environment. Itdeployed forms of time-critical I-DIDs. More importantly,



in Section 1V, we implement the entropy-based methodconditional probability table (CPT) of the chance node,
for selecting a proper condensed form. We conduct thés amultiplexer that assumes the distribution of each of the
experiment and show positive results on two well-studiedaction nodesA Az) depending on the value df[od[ il

domains in Section V. Finally, we discuss relevant worksIn other words wherMod[ ;] has the valuenj, ,, the
and conclude the paper with remarks. chance nodel; assumes the distribution of the noA¢ and
A, assumes the distribution of? when Mod[M;] has the

Il. BACKGROUND: INTERACTIVE DIDS vaIuem 1. The distribution ovetMod[M;], is i's belief

We briefly describe interactive influence diagrams (I-IDs)over j's models given the state. For more than two agents,
for two-agent interactions followed by their extensions towe add a model node and a chance node representing the
dynamic settings, I-DIDs, and refer the reader to [5] fordistribution over an agent's action linked together using a
more details. policy link, for each other agent.

A. Syntax

In addition to the usual chance, decision, and utility nodes
I-IDs include a new type of node called theodel node
(hexagonal node);;_1, in Fig. 1(a)). The probability
distribution over the chance nod#s, and the model node
together represents agerg belief over itsinteractive state
space In addition to the model node, I-IDs differ from IDs
by having a chance nodd,;, that represents the distribution
over other agent’s actions, and a dashed link, callpdlay
link.

Figure 2. A generic two time-slice levdl I-DID for agent:. Notice
the dotted model update link that denotes the update of thidelmo
of j and of the distribution over the models, over time.

I-DIDs extend I-IDs to allow sequential decision making
over several time steps. We depict a general two time-slice |
DID in Fig. 2. In addition to the model nodes and the dashed
policy link, what differentiates an I-DID from a DID is the
model update linkshown as a dotted arrow in Fig. 2. We
briefly explain the semantics of the model update next.

Figure 1. (a) A generic levell > 0 I-ID for agent: situated with one other
agentj. The hexagon is the model nodg/(;_,) and the dashed arrow
is the policy link. (b) Representing the model node and policy link using
chance nodes and dependenues between them. The decisies ofothe
lower-level I-IDs or IDs (n -1 m2l 1) are mapped to the corresponding

chance nodes%(1 A2) WhICh is |nd|cated by the dotted arrows.

The model node contains as its values the alternative
computational models ascribed byo the other agent. We
denote the set of these models M” 1A model in the Figure 3. The semantics of the model update link. Notice toevth in
model node may itself be an I-ID or ID, and the recursione number of models in the model nodetat 1 in bold.
terminates when a model is an ID or a simple probability
distribution over the actions. Formally, we denote a model The update of the model node over time involves two
of j as, mji—1 = (bju-1,0;), whereb;;_; is the level steps: First, given the models at tine we identify the
I — 1 belief, andé; is the agentsrame encompassing the updated set of models that reside in the model node at
action, observation, and utility nodes. We observe that théme ¢ + 1. Because the agents act and receive observations,
model node and the dashed policy link that connects it taheir models are updated to reflect their changed beliefs.
the chance noded;, could be represented as shown in Since the set of optimal actions for a model could include
Fig. 1(b). The decision node of each level- 1 I-ID is all the actions, and the agent may receive any on&of
transformed into a chance node. SpecificalyQiPT is the  possible observations, the updated set at time stepl
set of optimal actions obtalned by solving the I-ID (or ID), will have up to | M’ [[A;][€] models. Here| M, |
thenPr(a; € A}) = |OPT\ if a; € OPT, O otherwise. The is the number of models at time step|A;| and |Q; | are



the largest spaces of actions and observations respggtive| |-DID E XACT (level [ > 1 I-DID or level 0 DID, T)

among all the models. The CPT affod[M!7",] encodes | Expansion Phase
1. For t from Oto T'— 1 do

the function, (b ,_,,a}, t“,bﬁll) which is 1 if the | 57" "¢ /'] fhen
behefb g-q in the modelm 11 using the act|om§ and popu|ateM;jl
observatlono§+1 updates tobt+1 , in a model m!,; 3 For eachm! in M’ ,_, do
otherwise it is 0. Second, we compute the new dlstnbutior 4, Recursively call algorithm with the— 1
over the updated models, given the original distribution I-DID (or DID) that representsn’
and the probability of the agent performing the action and and the horizon7" — ¢
receiving the observation that led to the updated model. The > Map the decision node of the solved I-DID
dotted model update link in the 1-DID may be implemented (or DID) OP-T(mj)’ to the chance node,
_ : . 6. For eacha; in OPT(m!) do
using standard dependency links and chance nodes, as |iny For eacho; in O; (part of m®) do
Fig. 3, transforming it into a flat DID. 8. Update;j's belief, b*' — SE(b},a;,05)
_ 9. m!*1 — New I-DID (or DID) with b+t
B. Solution asjlnlt bellef ( :
The solution of an I-DID (and I-ID) proceeds in a bottom- | 10. MHLI L2 {m!*t'}
up manner, and is implemented recursively as shown i 11.  Add the model nodeMtfll, and the model
Fig. 4. We start by solving the level 0 models, which may be update link betweeth _; and Mj
traditional DIDs. Their solutions provide probability tis 12.  Add the chance, deClSlOﬂ and utility nodes ffor 1
butions which are entered in the corresponding action nodes time slice and the dependency links between them

found in the model node of the level 1 I-DID. The solution| 3 Establish the CPTs for each chance node and utility [node

method uses the standard look-ahead technique, projectinggjution Phase
the agent’s action and observation sequences forward from14. 1f [ > 1 then
the current belief state, and finding the possible beliedis th | 15. Represent the model nodes and the model update i
i could have in the next time step. Because agehas as in Fig. 3 to obtain the DID

a belief overj’s models as well, the look-ahead includes 16. ,(B(\)ep(lft/htehre asggpodafﬁeg?g'ggﬁzdtﬁ;(éxbp?nkéfdngﬁg'Od
finding out the possible models thatcould have in the

future. Consequently, each ¢ level 0 models represented Figure 4. Algorithm for exactly solving a levél > 1 I-DID or level 0
using a standard DID in the first time step must be solved t§'D expanded ovefl” time steps.

obtain its optimal set of actions. These actions are contbine
with the set of possible observations thatould make in

that model, resulting in an updated set of candidate models
(that include the updated beliefs) that could describe the
behavior ofj. SE(b?, a;,0;) is an abbreviation for the belief
update. Beliefs over these updated set of candidate models
are calculated using the standard inference methods throug

=

the dependency links between the model nodes (Fig. 3). We
point out that the algorithm in Fig. 4 may be realized using <1.23> S
the standard implementations of DIDs. <1,3>

Figure 5. Time-critical I-IDs (the condensed form of timatical I-DIDs).
Il. TIME-CRITICAL I-DIDS Nodes are indexed with a time sequence while long dasheddzmste
’ temporal relations.
Time-critical I-DIDs extend I-DIDs to time-critical de-
cision making analogously to how time-critical dynamic i <135
influence diagrams extend DIDs. We start with the proposal o mj_z;djb

of the condensed form of time-critical 1-DIDs.

A. The Condensed Form

The condensed form of time-critical I-DIDs serves as Arigure 6. Time-critical model node in which two modelal andm2,
static model of time-critical multiagent sequential demis have different sub-time sequencesl, 3 > and < 1,2 > respectively.
making. We may formalize I-IDs to be the condensed form
of time-critical I-DIDs. We show an example of time-critica
I-IDs in Fig. 5. and temporal (time-lag) relations between nodes. We also

Additional arcs fong dashedones) are called temporal index nodes with a time sequence (numbers in a angle
arcs in time-critical 1-IDs and represent both probalidist bracket) and the set of time indices may be different from



Figure 7. Time-critical I1-DIDs (the deployed form) resultérom the transformation of the condensed form in Fig. 5. éodith a double circle are
deterministic nodes.

one node to another. The longest sequence is called B. The Deployed Form
master time sequencen{s) while others shall be a sub-
time sequences(s) that is a subset of the master time
sequence. To avoid cumbersome denotations, we may n
index nodes whose time sequence is equivalent to the mast
time sequence. For example, the master sequence of tim@-
critical I-ID in Fig. 5is< 1,2, 3 > indexed to chance nodes
S, A; and O;. Decision noded; and utility nodeR; share
the master time sequence and the model nbflg_; has
the sub-time sequence 1,3 >. The time sequence will be
later utilized to expand time-critical I-IDs into time-tical
I-DIDs.

The deployed form of time-critical I-DID is the expansion
time-critical 1-ID (the condensed form of time-critical
&)ID). We transform the time-critical I-ID (in Fig. 5) to
e deployed form in Fig. 7. The transformation expands
e time-critical I-IDs similarly to the expansion phase fo
I-DIDs in Fig. 4. However,it must rely on various time
sequences indexed to relevant nodes. We repeat a normal
node (except the model node) only if its time sequence
is equivalent to the master time sequence; otherwise, the
node will be casted into a deterministic node (which is
deterministically dependent on its parent nodes) for tie ti

Recall that the model node contains all candidate modelgtelo where the time is not indexed in the time sequence.
of other agents. Those models may be abstracted in a FOr the model node, we update the model only at the

different way - they may have different condensed forms{ime step if the time is indexed in the time sequence to

This requires to index each model with a unique timethe model inside the model node. Otherwise, we retain all

sequence in the model node. Consequently, we must attacH20dels from the previous time step and do not perform
list of time sequences to the model node and each model &1 model update - we also mark the model node using
associated with a time sequence. Forma”ymétsts be the the type of deterministic nodes. Recall that the model with

k ki - _a sub-time sequence has a shorter time horizon. There is
c_ondensed form of modek; wherem; is indexed bya_sub no solutions (actions performed by other agents) from the
time sequencets. Assume that agent has two candidate ; P y ot 9 :
models, we show one example of indexed model node irllrnodel at a particular time step which is not indexed in the
Fig. 6. in this casests for modelm! is equal to the sub- time sequence. For facilitating the CPT setting of action

g node 4; (in Fig. 1), we assume a uniform distribution of

time sequence< 1,3 > while it is < 1,2 > for m?. We . ¢ h del o h babili
may also index the model node using a single time sequencaeCt'onS rom the model, e.g. assigning the proba ’Ilﬁ?Ll

if all models share the same time sequence. This is exactlgp the columns corresponding to the model.

the case for the model node in Fig. 5 where all models have COnsequently, we need to modify lines 4-10 in Fig. 4 and
the sub-time sequence 1,3 >. may expand time-critical I-IDs in a different way. Lines 4-

10 are only followed if the current time steds equivalent

We notice that the candidate model indexed by a sub-timé& the time index in the time sequence attached to model
sequence has a shorter time horizon than the models with tHg;- Otherwise, we do not need to updatg, but assign a
master time sequence. In other words, the subject agent uniform dlstr|but|on|ALj‘ to chance nodelg- for columns of
envisioned to suppose the bounded rationality of othertagerﬁn0d8|m§-

j. Agentj may take actions of fewer time steps and play We expand the time-critical I-ID of Fig. 5 and get the
an intervention only at the indexed times. For instance, irdeployed form of time-critical I-DID in Fig. 7. We observe
Fig. 6,m] is the model of 2 time horizons, and the solutionsthe model node at time = 2, M7, ,, is deterministically

arej's actions only at time¢ = 1 andt¢ = 3. dependent od/}, . In other words, the set of lower level's



models do not change when the model node is expandeagenti’'s action-observation paths induced b models,
att = 2. In addition, CPTs of nodel? have a uniform  Pr,, (AT,0f,---,A})and Pry, (AT,O, .-, A}), have

distribution. the dlstance Ofe measured by the KuIIback—LeibIer diver-
) ) gence (KL) [8]. The error of agents expected values (I-
C. Discussion DID solutions) is bounded byR*® — R™™)T x 2¢, where

Time-critical I-IDs serve as the condensed form of time-T is the time horizon of I-DIDs and?"** (R™") is the
critical I-DIDs while the deployed form is the expansion of agent:’s maximum (minimum) immediate reward, if an
the time-critical 1-IDs. Converting the condensed form to e-behavioral equivalence model is pruned from the model
the deployed form is similar to the expansion from I-IDs node. More details refer to [7].
to I-DIDs. The complexity still relies on the model update Following the same vein, we may defirebehavioral
where the number of candidate models ascribed to othegquivalence between two condensed forms of agemt
agents grows exponentially over time. On the other handmodels, mg-”ts and mjts, that are indexed by a master
the conversion depends on the condensed form in which théme sequence and a sub-time sequence respectively. Recall
time sequence indexed to the mode node has determinehatm’"** is the complete model of time-critical I-IDs that
the complexity of lower level's models and manipulates theexpands the model node at every time step. Subsequently
model growth!. For example, in Fig. 7, we do not need we may limit the solution error byR7** — RI™™)T x 2e¢
to expand the models from time= 1to ¢ = 2 and the if we selectm$"* that has at most distance fromm/"**.
model space does not increasetat 2. This results in a Here the distance is the KL divergence between the prob-
time-critical I-DID computationally cheap compared to the ability distributions ofi’'s action-observation paths induced
I-DID with all expanded models in every time step. by mmts and msts respectively. Appropriate usage will be

It is evident that the condensed form for the model nodeself- eV|dent in the rest of this paper.
may reduce the complexity of model expansion. This makes Having the quantitative measurement, we are able to
time-critical 1-DIDs tractable on the solutions. Meanvehil perform a greedy selection of the best condensed form for
the conversion may compromise the solution quality sincenodel mm;. The optimal way is to select the one;s™,
we use the abstract models, instead of complete modelghat has thdeastdistance from the condensed form;’“tS
at the lower level. Hence it is quite critical to prepare theindexed by a master sequence . To achieve this, we need
condensed form of time-critical I-IDs in a proper way. We to list all of the condensed form&jts for modelm;, and
shall handle this issue in the next section. compare each of them mmts For aT'-time horizon model,
the number of all condensed forms 2% — 1. Recall that
the computation ofPr,,, (AT, OF,--- , Al) is very time-

We proceed to build the appropriate condensed form byonsuming in the comparison [7]. Meanwhile, the selection
converting which would not incur much damage to thewill be applied to all modelsM; in the model node.
solutions of time-critical 1-DIDs. Essentially, we need to Consequently, the greedy selection would become intrctab
index the model node with a suitable sub-time sequence in choosing the optimai»$** for all models.
time-critical I-1Ds.

IV. SELECTION OF TIME-CRITICAL I-IDs

B. Entropy-based Selection

A. Greedy Selection The condensed form is an abstract model of I-ID since its
We may build the condensed form by indexing a randomconversion may not expand/update other agents’ models in
sub-time sequence to the model node. By doing this ievery time step. Recall that other agents are supposedeo tak
is unknown to the solution quality of the converted time-a random action for the particular time that is not indexed
critical 1-DIDs comparing to the I-DIDs that results from in the condensed form. An arbitrary selection may cause
the expansion of the model node indexed by the masteall models to be indexed with the same sub-time sequence.
time sequence. We need a way to measure the impact dtis results in completely unknown actions of other agents
the condensed form on time-critical I-DID solutions when at some particular steps, which may incur much loss to the

it is converted. solution quality. Hence we need a strategic selection of the
We follow the concept of behavioral equivalence [7] condensed form for all models in the model node.
that quantifies the influence of other agerg models (at To limit the solution error, we may consider only a subset

a low level) on solutions of agents I-DIDs. Muthu et.  of condensed forms that have at meslistance fromn;-”ts.
al. [7] state: Two models of agenf, m; and 7;, are  We expect to avoid the case that all aggstmodels select
e-behavioral equivalence if the probability distributioob the same condensed form from the subset. Towards this
insight, we propose an entropy-based method to measure
“We agree that the complexity is also relevant to the time @etei  the diversity of the condensed forms of all models in the
indexed to other nodes. Currently, we focus on the condeftzed of the . L . .
selection. We take a Shannon based definition of information

model node since model expansion has more impact on tirtieati-DIDs < - - -
as it does for normal I-DIDs. entropy that quantifies the information uncertainty [9].



Let {sts1, stsa, -, stsy} be sub-time sequences foF The algorithm aims to prepare the model S8F'(M,),
agentj’s models of the condensed form. We may cluster then which each model has a suitable condensed fm'j'n“tS
same sub-time sequence into a clagsand geti classes of using the entropy-based selection. We firstly compute the
sub-time sequences. Formally, the diversity of the coneléns probability distributions of agerits action-observation paths

forms for N models is calculated in Eq. 1. by expanding only the complete modﬁf’mts in I-ID (lines
2-3). The probability distributions are exact values since
EP = —{laljplal 4oy lacyy, ey ) the model,m’"™"* indexed by the master time sequence,
_Zif;l %ln% exactly expands all model node ovér time steps. The
values provide a benchmark for measuring the condensed
where|c;| is the cardinality of the’"'s classc;. forms with sub-time sequences in the selection. Similarly,

Eq. 1 offers us a quantitative selection when we are facingve obtain the probability distributions when one condensed
multiple condensed forms of modet; and all of them form, m];’StSq, is selected to be included im; (lines 5-6).
are within at mosk distance fromm}”ts. We may choose After that, we compute the KL distancBx 1 (-) ?, between
the one that would increase the current diversity of thehe distributions induced by the two models (line 7). If the
condensed forms. This may prevent the condensed formgistance is withine range we further check whether by
from running into a single type. We formalize the entropy-including the sub-time sequences, (indexed tOmI;’StS")
based selection in Fig. 8. would increase the diversity of the condensed forms at
the current time (lines 7-9). We select the condensed form
mf’mq if the diversity is increased (lines 9-10); otherwise,
ENTROPY-BASED SELECTION (Model setM;, I-ID m;, €) we take a new selection of the condensed form for the model
returns Condensed fornt'F(M;) m®%. In the worst case, we have to iterate all condensed forms
1. While M; not empty of m%. We select the condensed form that has the least

2. Prepare the condensed form with the master time . eomie |
sequencen”™**, for a model,m” € M; distance,Dr(+), from m;>™" if none of the condensed
3. Compute the probability distribution8r «,me:(-) * forms increases the diversity.
by calling Get-Probability(m*™* m.) ! In summary, the entropy-based selection still bounds the
4. Repeat ! solution error by(R™*® — R™™)T x 2¢, and may further
5. Select the condensed form* %> for reduce the actual error by providing a large diversity of the
the modelm? ! condensed forms in\;. It may gain much efficiency in
6. Compute the probability distribution8r x .r:, (-) b comparison to the greedy selection.
J
by calling Get-Probability(m’** m;) V. EXPERIMENTAL RESULTS
If DKL(Pka,mts(')HPT k,stsq ()) S € . X
i My We implemented both the greedy selection (GS) and the
Compute the diversity of the condensed - -
forms E P, in Eq. 1 entropy-based algorithm (ES), and empirically demonstrat
9. If Epk,q;lqg EPy.q the time-critical I-DIDs (singly nested) on two well-stedi
10. CF(M;) & m™e M, & mb domains: the multi-agent tiger [10] and a multi-agent \a@msi
11. While EPy,_; < E}Dk,q ! of the machine maintenance problem [11]. We show that
12. ReturnC'F (M) the performance of ES algorithm (with differeatvalues)

approaches GS performance regarding the solution quality
of the time-critical I-DIDs. We compare to an exact method
that actually indexes the master sequence toj athodels

GET-PROBABILITY (m;,I-ID m;)
eturns Pr(AT, 0T, A})
1. Convert the condensed form of I-IBy;, to

the deployed form using the model,; and expand them exactly at each time step. The exact one

2. Transform the deployed form (DID) into dynamic serves as an optimal solution of I-DIDs. More importantly,
Bayesian networks by replacing decision nodes with we demonstrate that ES achieves much efficiency indicated
chance nodes having uniform distribution by the low run times.

3. Compute the distributio®r(A7, 07 ,--- | A})

from the dynamic Bayesian networks inference We select the condensed formjid models through either

GS or ES method. By includingls models, we convert the
condensed form of's I-IDs to the deployed form of time-

APr kmes () refers oPr . mes (AT, OF - A}) critical I-DIDs. We computei’s optimal policies and play
bprm;m(.) refers oPr o (AT,OT,... Al) with agent;. In Figs. 9 and 10, we show the average rewards
J mj
2 —
Figure 8. Algorithm for selecting the condensed form for heac DKL(PTm;?’"”S(')Hprm’?vsfsq(')) =

j's model m* using the entropy-based method. The functiGret-
Probability(m;,m;) computes the probability distributions ais action- 1 (Pr pomts ()
2 m s
J

Pr omes ) Pr gostog ©)
observation paths [7] whem; is expanded inm;.

J . J
log 5 kystsg () + Prmf'Stsq (-)log Pr kmts ()
™ J
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Figure 10. Performance profile obtained by solving a levahieicritical I1-DID for the multiagent machine maintenan@®blem using both the greedy
and entropy-based selections far) 3 horizons andb) 4 horizons.

gathered by executing the policies obtained from solvirgg th tevel 1| T Gg'me (S)ES
I-DIDs. We test all methods across different numberg'sf Tiger | 4 87.176  26.287
models (M;|). Each data point here is the average of 30 5 188973 67.245
runs where the true model of the other aggnts randomly MM i 14212'281937 3134'185?8
picked according ta’s belief distribution overj’s models. Table T '

COMPARISON OF RUN TIMES ALL EXPERIMENTS ARE RUN ON A
S WINXP PLATFORM WITH A DUAL PROCESSORXEON 2.0GHz WITH

We observe that the performance of both GS and E 2GB MEMORY.

selections are quite close to the performance of the exact
method on the solution quality. Recall that the GS selection
results in the optimal time-critical I-DIDs that has thedea
distance from the exact I-DIDs. Hence it is evident that
time-critical I-DIDs really upset the solution quality, tdo
not incur much loss if the condensed form is appropriately Timely action is often critical on facing rapid changes in
selected. The performance of ES selection approaches BBe real world. The time-critical dynamic decision problem
and becomes better whenis reduced. This is true for is to decide or select a course of actions that satisfies
different sets ofj’s models on both problem domains. some objective in an environment under time constraints.
Normative methods have been used to formalize time-ckitica
Finally, we show the efficiency of ES selection measureddecision problems in dynamic decision making systems
by run times (seconds) in Table I. We ran 25 initial modelse.g. Bayesian networks and influence diagrams [12]. Xi-
of agentj in time-critical 1-DIDs, and set 0 .005 and ang and Poh [2], [4] proposed time-critical dynamic influ-
0.0005 toe values for the multiagent tiger and machine ence diagrams for the modelling of time and dealing with
maintenance (MM) domains respectively. The ES selectiotime-pressured situations to develop time-critical dyitam
achieves significantly lower run times in comparison to thedecision-support systems. Their work has been succegsfull
GS. This may make time-critical I-DIDs more applicable in applied to medical decision systems e.g. dynamic decision
the real problem. making for the treatment of cardiac arrest. Tseng and Gmy-
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