
An Influence Diagram Approach for Multiagent
Time-Critical Dynamic Decision Modeling

Le Sun1, Yifeng Zeng2 and Yanping Xiang1

1 School of Computer Science and Engineering, University of Electronic Science and

Technology of China, Chengdu 610000, China
{sunle2009, xiangyanping}@gmail.com

2 Dept. of Computer Science, Aalborg University, DK-9220 Aalborg, Denmark
yfzeng@cs.aau.dk

Abstract. Recent interests in multiagent dynamic decision modeling in partially
observable multiagent environments have led to the development of several
representation and inference methods. However, these methods have limited
application under time-critical conditions where a trade-off between model
quality and computational tractability is essential. We present a formal
representation for modeling time-critical multiagent dynamic decision problems
through interactive dynamic influence diagrams. The proposed model, called
interactive time-critical dynamic influence diagrams, has the ability to represent
space-temporal abstraction in multiagent dynamic decision models. More
importantly, we take the notion of object-orientation design and make the
representation flexible and reusable. The new design facilitates the modeling
and implementation of models’ self-expansion and self-compression.

Keywords: Time-Critical Decision Making, Multiagent Systems, Model
Construction.

1 Introduction

Timely action is often critical in facing rapid changes in the real world. The time-
critical dynamic decision problem is to decide or select a course of actions that shall
achieve a set of goals while they must be executed under time constraints. It may be
considered as a real-time decision problem[1] that seeks an optimal trade-off between
solution quality and solution time via the use of the most appropriate model and
solution algorithm. There is a growing line of interest, mainly on a single-agent
setting, for addressing time-critical dynamic decision problems [2], [3], [4]. Most of
previous work adopts a type of normative systems, e.g. Bayesian networks and
influence diagrams [2]. Recently, Xiang and Poh [3], [5] proposed a formal
representation of time-critical dynamic influence diagrams that provide explicit
support for the modeling temporal processes and dealing with time-critical situations.
Their work is applicable in a single-agent decision domain.

Time-critical decision modeling is more significant for multiagent applications due
to the complicated decision process and solutions. The modeling of time plays an

mailto:yfzeng@cs.aau.dk

important role in a multiagent domain since multiple agents may interact with each
other over time. Our interest in time-critical multiagent systems is motivated by the
emergence of several applications including anti-air defense domain[6], Robocup[7]
and multi-player online games[8]. Additionally, a suitable set of time-critical decision
making techniques would allow multiple agents to coordinate their actions within a
time limit so that individual rational actions do not adversely affect the overall system
efficiency [9].

The purpose of this paper is to present a form technique for modeling multiagent
time-critical dynamic decision problems. We rest on the representation of interactive
dynamic influence diagrams (I-DIDs) [10], and propose a formalism called
Interactive time-critical dynamic influence diagrams (I-TCDIDs) that provide explicit
support for the modeling of time in the representation. I-TCDIDs focus on both data
abstraction and model abstraction. For a given domain, a suite of decision models at
different levels of space-temporal abstraction may be specified by either domain
experts or knowledge engineers, and then organized in a knowledge base. In general,
each abstract model may be solved by a number of algorithms and the choice of
abstract model and algorithm will affect the final decision quality and computational
cost.

Similar to I-DIDs, the construction of I-TCDIDs is a tedious job. The models can
only be used in the specific domain for which it was created because each node
corresponds to some domain attributes and the set of nodes and the network structures
are fixed in advance [11]. The thing becomes more complicated when we need to
expand models over time 1 . The construction becomes intractable in a complex
problem domain. We therefore take the notion of object-orientation to design an
efficient representation scheme for I-TCDIDs. The proposed design reduces the
implementation complexity of the problem and makes possible the models’ self-
expansion and self-compression. We illustrate the design through an anti-air example
and show the utilization of I-TCDIDs.

2 Background

I-DID provides a relatively efficient method for representing multiagent sequential
decision problems [10]. Its static model, called interactive influence diagram (I-ID),
extends influence diagrams by introducing a new model node. We show one example
of I-ID in Fig. 1(a). The I-ID model is constructed from the viewpoint of agent i that
interacts with agent j. The model node, Mj,l-1, contains possible computable models of
other agent like mj,l-1

1,… ,mj,l-1
n in the low level l-1. Solutions of all models are

weighted by agent i’s beliefs on j’s models and aggregated into chance node Aj (via
the policy link). The issue becomes complicated when I-ID is expanded into I-DID
over time. As agent j may act and receive observations, its models need to be updated
to reflect their new beliefs. We assume the model node at time t, Mj,l-1

t, contains two

1 To the best of our knowledge, one of the most efficient decision tool HUGIN
(www.hugin.com) does not implement the expansion functionality that would automatically
expand Bayesian Networks/influence diagrams to dynamic diagrams. I-DIDs are heavily
built on HUGIN API.

j’s models (mj,l-1
t,1 and mj,l-1

t,2), and show the model update in Fig. 1(b). Since agent j
may receive any of |Oj|(=2) possible observations the updated set at time t+1 will
become 4 models (mj,l-1

t+1,1 ,…, mj,l-1
t+1,4). The four models differ in their initial beliefs.

The distribution over the updated set of models in the chance node Mod[Mj
t+1]

depends on the distributions over j’s action and observation that led to these models,
and the prior distribution over the models at time step t. More details about I-DID
refers to [10] due to the limited space here.

mj,l-1
t+1,1

mj,l-1
t+1,2

mj,l-1
t,,2

mj,l-1
t,,1

Mod[Mj
t]

Aj
1

Aj
2

Aj
t

Mod[Mj
t+1]

Aj
3

Aj
4

Aj
t+1

Aj
1

Aj
2

Oj
1

Oj
2

Oj
t+1

mj,l-1
t+1,3

mj,l-1
t+1,4

St+1

Ai
t

Mj,l-1
t Mj,l-1

t+1

St

Ai
Ri

S

Oi

Aj

Mj,l-1

(a) (b)

Fig. 1. (a) A generic level l > 0 I-ID for agent i with a model node (Mj,l-1) and the policy link
represented by the dashed arrow. (b) Model update from t to t+1. Mod[Mj

t] has the number of
j’s models as its values. Notice the growth of models in the model node at t+1 in bold.

Current design of I-DIDs or most probabilistic graphical models are not essentially
rooted in the object-oriented paradigm. We perceive that object-orientation
conception would improve the current design and implementation. Here it is
necessary to cover some of basic concepts. In the object-oriented paradigm the basic
component is an object, an instance of a class. A class is a description of objects with
common structures, behaviors and attributes, and has an associated set of nodes,
connected by links. In addition to usual nodes in probabilistic graphical models, a
class may also contain special nodes, called instance nodes, representing instances of
other classes. A class instance represents a network containing three sets of nodes as
defined in HUGIN: input nodes, output nodes and protected nodes. Input nodes and
output nodes are the class interfaces and used to link the class instances to other
network fragments. They must only be decision or chance nodes. Protected node is
the node that only has parents and children inside the class. It can be all kinds of
nodes.

3 Knowledge-Based Interactive Time-Critical Dynamic Influence
Diagrams(I-TCDIDs)

I-TCDID is a formalism designed to facilitate the modeling and solution of multiagent
time-critical dynamic decision problems. It extends I-DID by including the concepts
of temporal arcs and time sequences. Furthermore, I-TCDID incorporates the object-

oriented conception to realize models’ self-expansion and self-compression.
Repetition of identical structures is avoided for dynamic modeling.

An I-TCDID is defined as an instance of inference class which is composed of
instances of time-slice class (i.e. time-slice instances). Given the initial information
(specified by domain experts), the instance of inference class (inference instance)
realizes dynamic decision modeling, and gets the optimal policy. As mentioned in
Section 2, I-DIDs introduce a specific model node representing other agents’ models
and the models are expanded over time. This would become inflexible and redundant
because other agents’ may be abstracted in I-TCDID and we do not need to consider
other agents’ actions in every time step. I-TCDIDs address this gap by allowing the
representation of other agents’ models as the values of instances of agent class.

Each node in an I-TCDID represents a set of time-indexed variables (including
instance node). The set of time indices may be different from one node to another, but
they must be a subset of a master time sequence. The arcs in an I-TCDID are called
temporal arcs and they denote both probabilistic and temporal (time-lag) relations
among the variables. I-TCDID allows for the coexistence of nodes with different
temporal information in the same model.

A formal definition of interactive time-critical dynamic influence diagram is given
below.

Definition 1. An Interactive time-critical dynamic influence diagram I-TCDID=<D,
C, V, Ai,At, P, AC, TC, Tm> where:

D is a set of temporal decision variables. Each D∈D is a sequence of decision
variables indexed by a time sequence TD and is represented in the graph by a square
node.

C is a set of temporal chance variables. Each C∈C is a sequence of chance
variables indexed by a time sequence TC and is represented in the graph by an oval
node.

V is a temporal utility variable. It is a sequence of utility functions indexed by a
time sequence TV . V is represented in the graph by a diamond node.

Ai⊆ (D∪C)×(D∪C∪{V}) is a set of instantaneous arcs such that (X,Y)∈Ai if
and only if there exists an instantaneous arc from node X∈(D∪C)to node Y∈(D∪C
∪{V}). An instantaneous arc is represented in the graph by a solid directed arc.

At (D∪C)×(D∪C∪{V})is a set of time-lag arcs such that (X,Y)∈At if and
only if there exists a time-lag arc from node X∈(D∪C) to node Y∈(D∪C∪{V}). A
time-lag arc is represented in the graph by a directed dashed arc.

⊆

P is a set of conditional probability distributions. For each chance node X∈C,
we assess a sequence of conditional probability distributions p(Xi|π(Xi)) where i∈Tx ,
π(Xi)={Yj|(Y,X)∈At, j=max{k|k∈TY,k<i}}∪{Yj|(Y,X)∈Ai, j=i}.

AC is a set of agent instance (i.e. instances of agent class). Each AC∈AC is an
agent instance indexed by a time sequence TAc.

TC is a set of time-slice instance (i.e. instances of time-slice class). It is defined
as TC=<D,C,V,AC,Ai,At,P>. Each TC∈TC is a time-slice instance indexed by a
time sequence TTC.

Tm is the master time sequence. A time sequence is a set of time indices
represented by <t1,t2,…,tn>, where t1 is the initial time point of interest and tn is the
last time point of interest. Let TD ={ TD |D∈D},TC ={ TC |C∈C}, TAC={ TAC |AC∈
AC}, TTC={ TTC |TC∈TC} and TV =Tm. Each time sequence must be a subsequence
of the master time sequence.

Definition 2. Given a time-slice class TC, we define an inference class IC=<INF,
TC>, where INF is the initial information.

I-TCDIDs are graphical models of instances of inference class. For a given domain,
an inference class and a suite of decision models at different levels of space-temporal
abstraction of inference class may be specified by either domain experts or knowledge
engineers, and then organized in a knowledge base. The abstraction is organized in
the form of initial information which can be used to initialize an inference instance.
Initial information contains time index of both nodes, state variables and embedded
models. The selected information is used to index the nodes in a time-slice class and
time-slice instance nodes.

3.1 Agent Class

Agent class models common domain structures, behaviors and attributes in the
domain. It is an inference model with input nodes, output nodes and protected nodes.

Interactive Object-Oriented Influence Diagrams（I-OOIDs）.I-OOIDs generalize
I-IDs to abstract agents’ models as an agent class. Each agent’s inference model is an
agent instance that includes a set of its intentional and subintentional models and has
the agent’s optimal policy as the output. In I-OOIDs, an agent instance corresponds to
an agent instance node and is represented as a dashed rectangle. For the simplicity of
presentation, we consider two agents, i and j, which are interacting in a common
environment. Fig.2 shows an example of one agent, say i’s, I-OOID with an instance
node Cj,l-1 of another agent j. This is agent i’s inference model in the strategy level l.
For more than two agents, we could have an agent instance node for each other agent.
The new instance nodes are conditioned on the physical state and possibly instance
nodes of other agents while they are linked to the utility node.

Agent Class. As shown in Fig. 2, the dashed rectangle represents agent j’s instance
node. The input node S, which is represented by an oval with heavy grey border, is a
set of current state variables. Input nodes represent nodes that are actually not in the
class; they act as place-holders for parents of nodes inside instances of the class. The
output node Aj,l-1, which is represented by a gray (fill-in) oval node, is a set of optimal
actions of agent j.

We can see from Fig. 2, the input and output nodes constitute the interface which
interacts with the surroundings of the instance. The protected nodes could not interact
with other nodes outside of the instance node. The state node S, connected to the input
node S of agent instance, is the node that is the actual parent of the children of the

input node S. Default potential[12] is provided if an input node do not have a parent
node.

Fig. 2. Agent i’s I-OOID including agent j’s
instance node Cj,l-1.

Mod[Mj]

S

Aj
n…

Aj,l-1

Aj
1

…

Cj,l-1

mj,l−1
nmj,l−1

1

Ai,l

Vi,l

S
Oi,l S

Aj,l-1
Cj,l-1

Fig. 3. The deployed form of agent j’s
instance node with several computational
models(mj,l−1

1,…, mj,l−1
n) instantiated from

j’s agent class.

The agent instance node contains as its values the alternative computational models

ascribed by i to the other agent. The detailed agent instance node is shown in Fig. 3.
The nodes surrounded by dashed rectangles, mj,l−1

1,…, mj,l−1
n, are computational

models in level l-1. Each computational model is an instance of j’s agent class in the
low level. Hence agent class is defined in a recursive way.

3.2 Time-Slice Class

The basic building block of I-TCDID is a one time-interval model of a specific
domain. The one time-interval network fragment constitutes a class called time-slice
class and each specific time-interval model is an instance of time-slice class. The arcs
are called temporal arcs and they denote both probabilistic and temporal (time-lag)
relations among the variables. The framework of time-slice class is shown in Fig. 4.
The nodes with heavy grey border in Fig. 4 are input nodes. The input nodes, St-1, Ai,l

t-

1, Cj,l-1
t-1, represent the belief states, actions of agent i, and the instance model of agent

j in the previous time step respectively. The grey nodes, St，Ai,l
t，Cj,l-1

t, are output
nodes which represent a set of corresponding variables at the current time step. Solid
arcs are instantaneous arcs and dashed arcs are time-lag arcs that model relationships
between nodes in continous time-slices. For instance, the dashed arc between St and
St-1 represents the physical states in current time-slice influencing that of next time-
slice.

St-1 Ai,l
t-1 Cj,l-1

t-1

St Ai,l
t

Cj,l-1
t

Ot

V

Fig. 4. A generic level l Time-slice class for agent i. Notice the model update arc represented
by solid bold arc denotes the update of the models of j and of the distribution over the models,
over time.

The nodes Cj,l-1
t-1 and Cj,l-1

t are not the actual input and output nodes. The arcs,
coming from and going to the agent instance node, are called influential arcs. For
instance, the arcs from Cj,l-1

t-1 to St and Ot only represent the influencial relationships
in Fig. 4. The solid bold arc from Cj,l-1

t-1 to Cj,l-1
t is a new arc called model update arc

(the time-indexed model update link [10]) reflecting updates of models in agent
instance node between two continouse time-slices. The updated model node demands
only the place-holders S and instances of agent j’s classes e.g. mj,l-1

t and so on. The
model update arc may be replaced by the dependency arcs between the chance nodes
that constitute the agent instance nodes in the two time-slices. The influential arcs
coming from the rest fragment of the time-slice class and connecting to the agent
instance node can be seen as the arcs connecting to the input node S of agent instance
node. This is the same as output arcs of agent instance node.

3.3 Inference Class

The inference process of interactive time-critical dynamic modeling is defined as an
inference class that is index by a time sequence. We show an instance of agent i’s top-
level inference class in Fig. 5. Four time-slices (t1, t2, t3, t4) are considered and the
master time sequence is <1,2,3,4>. S1 and S2 are a set of input state variables that are
indexed in a different way. For example, the node S1 is indexed by the time sequence
<1,2>. Consequently, the state variables in node S1 are only considered in time-slices
t1 and t2 and are referenced by the input nodes in time-slice instance t1 and t2. The
output is agent i’s policy, grey color fill-in rectangle node policy . i

Mj
0 contains agent j’s models ascribed by agent i. Recall that the agent instance

node contains all candidate models of other agents. These models may themselves be
inference instances (the static models, I-OOIDs, IDs etc., initialized by initial
information) leading to recursive modeling. They may be abstracted in a different way.
This requires to index each model with a unique time sequence in the agent instance
node. Assume that agent j has two candidate models, mj

1 and mj
2. we show one

example of initial information about agent instance node with different time-indexed
models in Fig. 6.

In this case, model mj
1 is indexed by the subtime sequence <1,3> while mj

2 is
indexed by <1,2>. We may also index the instance node using a single time sequence
if all models share the same sequence. This is exactly the case for the initial
information in Fig. 5 where Mj

0 is time-indexed by <1,3> and all models have the
same time sequence <1,3>. In this case, Agent j may not be considered in time
sequence <2,4> for its negligible influence. Agent j may take actions for fewer time
steps and play an intervention only at the indexed times. This means that agent j has
been temporally abstracted by omitting its value at some intermediate time indices.

Fig. 5. An instance of Agent i’s inference
class with four time-slice instances(t1, t2, t3,
t4).

Fig.6. Initial information about agent
instance node in which two models, mj

1 and
mj

2, have different sub-time sequences
< 1, 3 > and < 1, 2 > respectively.

Ai
0Mj

0

S1 Ai,lCj,l-1

S1 Cj,l-1
1

Ai,l

1

Mj

S2 Ai,l

2Cj,l-1
2

S3 Cj,l-1
3

Ai,l

3

S3 Ai,l

3Cj,l-1
3

S4 Cj,l-1
4

Ai,l

4

S1

1 Ai,l
1Cj,l-1

1

S2 Cj,l-1
2

Ai,l

2

S2
1

Policyi

<2>

<3>

<4>

<1>

policyi

Mj
0 S1 S2

<1,2> <1,3>

t1 t2 t3 t4

<1,2,3,4>
<2>

mj
2: <1,2> Mj

0
mj

1: <1,3>

Fig.7. The deployed form of inference
instance of agent i. Nodes with double
circles are deterministic nodes.

The deployed process of inference instance is shown in Fig. 7. We repeat a normal
node (expect the model node) only if its time sequence is equivalent to the master
time sequence; otherwise, it will be casted into a deterministic node (which is
deterministically dependent on its parent nodes) for the time step where the index
value is omitted from the time sequence. For the agent instance node, we update the
model only at the time step if the time is indexed in the time sequence to the model
inside the model node. Otherwise, we retain all models from the previous time step

and do not perform any model update - we also mark the instance node using the type
of deterministic nodes. There is no solutions (actions performed by agents) from the
model at a particular time step which is not indexed in the time sequence. For
facilitating the CPT setting of action node Aj,l-1 (in Fig. 2), we assume a uniform
distribution of actions from the model, e.g. assigning the probability 1/|Aj| to the
columns corresponding to the model.

The policy node as the output node of inference class represents agent i’s optimal
policy. Its parents are the output nodes of time-slice instances included in inference
class. Time-slice instances are related to each other: the current time-slice instance
influences the next time-slice instance. This is evident in the deployed form in Fig. 7
There are only two agent j’s instance nodes Cj,l-1

1 and Cj,l-1
3, and nodes Cj,l-1

2 and Cj,l-1
4

are assumed to be deterministically dependent on (possibly equal to) nodes Cj,l-1
1 and

Cj,l-1
3 respectively. In addition, CPTs of node Aj,l-1

2 in the agent instance node Cj,l-1
2

have a uniform distribution.

Fig. 8. The anti-air defense scenario.

MI

V

A

IT
MT

MA

MD

MWS

MS

Fig. 9. Level 0 model of agent j. Note that
agent i’s instance node is not included.

4 Case Study

We illustrate the usefulness of I-TCDIDs on an anti-air defense domain. The problem
is a slightly modified version of the anti-air denfense game[6]. The game has six
incoming missiles and two defenders, say agents i and j, to intercept the missiles in a
20 by 20 grid world. We show the game scenario in Fig. 8. Each of the agents decides
to intercept the coming missiles to minimize the damages. Since no communication
exists between the two agents they need to model each other to coordinate their
interception decisions. This would avoid a redundant target at the same threat.

Let us consider a particular setting of this problem in which agent i considers two
distinct level 0 models of j. The two models may differ in the probability that agent j
owns interceptor types. Agent i makes decisions in a master time sequence <1,2,3,4>
considering agent j’s actions only in time-slice <1,3>. Agent j’s two models are all
time-indexed by the sequence <1,3>. Agent j is assumed to act randomly except for
observing in time-slice <2,4> from the eyes of agent i. Agent j’s model is constructed

as shown in Fig. 9. The missile’s warhead size (MWS) and speed (MS) and the
distance (MD) and angle (MA) between the missile and the agent are the relevant
features influencing the agents’ decisions. As agent j’s observations, the missiles’
threat(MT) and interceptorbility(MI, the likelihood of intercepting a missile) and the
type of interceptor(IT) the agent has (long range or short range), directly impact the
agent’s utilities.

We may proceed to deploy and compute the inference instance after the
initialization of I-OOID. The detailed structure of a time-slice instance and agent
instance is shown in Fig. 10. Two models of agent j, mj

1 and mj
2 , are included in

agent j’s instance node. Fig. 9 shows the model structure. They model two cases
respectively: Agent j has both short and long range interceptors to shoot all the
missiles; agent j has only long range interceptors that can only shoot down one of A,
B, or C. An I-TCDID with two time-slice instances is shown in Fig. 11. Missile0 is the
missile class node that could be further instantiated into four missiles’ variables (MD,
MA, MWS, MS) coming from Radar-data. Since the Mj

0 node is time-indexed by<1,3>,
the agent instance node Cj

2 is respresented using double-dashed rectangle which
means Cj

2 is assumed to be deterministically dependent on (possibly equal to) nodes
Cj

1. The models are not updated or expanded into Cj
2.

Ai
t

V

ITt

Ai
t-1 Cj

t-1

Mod[Mj
t]

Aj
1 Aj

2

Aj
t

MTt

MIt

Missilet

ITt Missilet-1

Aj
t

Cj
t

mj
1 mj

2

Fig. 10. The deployed time-slice instance node and agent j’s instance node with two
computational models(mj

1 , mj
2).

In Fig. 10, the agent instance node contains different inference instance models that
are expanded from the level 0 IDs where nodes are time-indexed by the initial
information. We get the probability distribution of j’s actions in chance node Aj

1 by
solving the level 0 models of j in Fig. 11. On performing the optimal action(s) at time
step 1, i may receive observations of the missiles’ information to speculate j’s
information of interceptors. This is reflected in updated models and new beliefs
corresponding to these models. Consequently,agent j’s instance node in the next time-
slice contains more models of j and i’s updated belief on j’s possible inference models.

V

Ai
1

MI1

MT1

Missile1

IT1

Aj
1

S1

V

Ai
2

MI2

IT2

Missilt2

IT2

Aj
2

S2

ITi
0 Mj

0 <1,3>
Missile0

Cj
2Cj

1

<1> <2>

Fig. 11. An I-TCDID with two time-slice instances. The node Mj
0 is time-indexed by time

sequence <1,3>, so Cj
2 is assumed to be deterministically dependent on (possibly equal to)

nodes Cj
1.

5 Related Works

One of most relevant works is the representation of time-critical dynamic influence
diagrams [3], [5]. Xiang and Poh [3] proposed two forms of time-critical dynamic
influence diagrams: the condensed form and the deployed form. The condensed form
is used in modeling process. The deployed form is the unfolded form and be mainly
used for the inference purpose. The approach has successfully tackled some medical
decision problems e.g. the treatment of cardiac arrest.

For the study of multiagent dynamic decision making, Noh and Gmytrasiewicz [6]
investigated multiagent coordination in an anti-air defense domain and took the
recursive modeling framework. Their method does not enjoy an explicit
representation of problem domain and is difficult for a generalization. I-DIDs [10]
have become a popular tool for modeling sequential multiagent decision problems.
The modeling takes the viewpoint of individual agents and explicitly describes how
other agents behave in agents’ interaction. Extension to modeling time-critical
decision problems would be a natural way as time-critical dynamic influence
diagrams extend influence diagrams. However, the complicated representation needs
to be ironed in a modular manner.

Object-oriented Bayesian networks [11] become a powerful representation
technique that allows the modeling of complex domain. Bangso and Olesen [12] used
the similar concept to solve a large medical decision problem. Its extension to
influence diagrams sounds no straightforward. Currently, HUGIN takes the initiative
and proceeds to the implementation.

6 Conclusion

We propose a formal model of I-TCDIDs to represent multiagent time-critical
dynamic decision problems. The new technique uses an object-orientation concept to
abstract the representation especially on the model expansion over time. It defines an
instance of inference and time-slice class based on the concept of agent class. We
show the space-temporal abstraction and agent abstraction in I-TCDIDs, and
demonstrate one application in the anti-air defense game. Future work would be
interesting to study the impact of initialization on the inference instance in I-TCDIDs.

References

1. Séguin, R., Potvin, J.YJ., Gendreau, M., Crainic, T.G., Marcotte, P.: Realtime
Decision Problems: An Operational Research Perspective. Journal of the
Operational Research Society, 48, 162-174 (1997)

2. Horvitz, E., Seiver, A.: Time-critical action: Representations and application. In:
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence,
pp. 250–257 (1997).

3. Xiang, Y.P., Poh, K.L.: Time-Critical Dynamic Decision Making. In: Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 688-
695(1999).

4. Cohen, I.: Improving time-critical decision making in lifethreatening situations:
Observations and insights. Decision Analysis, 5, 100–110(2008)

5. Xiang, Y.P., Poh, K.L.: Knowledge-based Time-Critical Dynamic Decision
Modeling. Journal of the Operational Research Society, 53, 79-87(2002)

6. Noh, S., Gmytrasiewicz, P. J.: Agent modeling in anti-air defense: A case study. In:
Proceedings of the Sixth International Conference in User Modeling, pp. 389–
400(1997).

7. Kitano, H., Kuniyoshi, Y., Noda, I., Asada, M., Matsubara, H., Osawa, E.:
RoboCup: A challenge problem for AI. AI Magazine, 18, 73–85(1997).

8. Yee, N.: The Demographics, Motivations, and Derived Experiences of Users of
Massively Multi-User Online Graphical Environments. Presence: Teleoperators
and Virtual Environments, 15, 309-329(2006)

9. Bond, A.H., Gasser, L.(Eds.): Readings in Distributed Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA(1988)

10.Doshi, P., Zeng, Y., Chen, Q.: Graphical models for interactive pomdps:
Representations and solutions. Journal of Autonomous Agents and Multiagent
Systems (JAAMAS), 18, 376–416(2009)

11.Koller, D., Pfeffer, A.: Object-Oriented Bayesian Networks. In: Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 302-
313(1997).

12. Bangsø, O., Olesen, K.G.: Applying Object Oriented Bayesian Networks to Large
(Medical) Decision Support Systems. In: Proceedings of 8th Scandinavian
Conference on Artificial Intelligence, Bergen, Norway(2003).

