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Abstract. Interactive influence diagrams (I-IDs) offer a transparentand intuitive representation for the decision-making problem
in multiagent settings. They ascribe procedural models such as influence diagrams and I-IDs to model the behavior of other
agents. Procedural models offer the benefit of understanding how others arrive at their behaviors. Accurate behavioralmodels
of others facilitate optimal decision-making in multiagent settings. However, identifying the true models of other agents is a
challenging task. Given the assumption that the true model of the other agent lies within the set of models that we consider, we
may utilize standard Bayesian learning to update the likelihood of each model given the observation histories of others’ actions.
However, as model spaces are often bounded, the true models of others may not be present in the model space. We then seek to
identify models that arerelevantto the observed behaviors of others and show how the agent maylearn to identify these models.
We evaluate the performance of our method on three repeated games and provide theoretical and empirical results in support.
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1. Introduction

Interactive influence diagrams (I-IDs) [7] are graph-
ical models for decision making in uncertain mul-
tiagent settings. I-IDs generalize influence diagrams
(IDs) [21] to make them applicable to settings shared
with other agents, who may themselves act, ob-
serve and update their beliefs. I-IDs and their se-
quential counterparts, interactive dynamic influence
diagrams (I-DIDs) [7], contribute to a growing line
of work that includes multiagent influence diagrams
(MAID) [12], and more recently, networks of influence
diagrams (NID) [9]. All of these formalisms seek to
explicitly and transparently model the structure that is
often present in real-world problems by decomposing
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the situation into chance and decision variables, and
the dependencies between the variables.

I-IDs ascribeprocedural models to other agents
– these may be IDs, Bayesian networks (BN), or I-
IDs themselves leading to recursive modeling. Besides
providing intuitive reasons for the strategies, procedu-
ral knowledge may help preclude certain strategies of
others, deeming them impossible because of the struc-
ture of the environment. As agents act and make obser-
vations, beliefs over others’ models are updated. With
the implicit assumption that the true model of other
is contained in the model space, I-IDs use Bayesian
learning to update beliefs, which gradually converge.

However, in the absence of this assumption, Bayesian
learning is not guaranteed to converge and in fact, may
become undefined. This is significant because though
there are uncountably infinite numbers of agent func-
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tions, there are only countable computable models.
Hence, theoretically it is likely that an agent’s true
model may not be within the computable model space.
This insight is not new – it motivated Suryadi and
Gmytrasiewicz [20] to modify the IDs ascribed to oth-
ers when observations of other’s behaviors were incon-
sistent with the model space during model identifica-
tion.

An alternative to considering candidate models is to
restrict the models to those represented using a mod-
eling language and directly learn, possibly approxi-
mate, models expressed in the language. For example,
Carmel and Markovitch [3] learn finite state automa-
tons to model agents’ strategies, and Sahaet al. [17]
learn Chebychev polynomials to approximate agents’
decision functions. However, the representations are
non-procedural and the learning problems complex.

In this article, we consider the realistic case that the
true model may not be within the bounded model space
of the other agent in an I-ID. In this context, we present
a technique that identifies a model or a weighted com-
bination of models whose predictions arerelevantto
the observed action history. Using previous observa-
tions of others’ actions and predictions by candidate
models, we learn how the predictions may relate to the
observation history. In other words, we learn toclas-
sify the predictions of the candidate models using the
previous observation history as the training set. Thus,
we seek the hidden function that possibly relates the
candidate models to the true model.

We then update the likelihoods of the candidate
models. As a Bayesian update may be inadequate, we
utilize the similarity between the predictions of a can-
didate model and the observed actions as the likeli-
hood of the model. In particular, we measure themu-
tual informationof the predicted actions by a candi-
date model and the observed actions. This provides a
natural measure of the dependence between the can-
didate and true models, possibly due to some shared
behavioral aspects. We theoretically analyze the prop-
erties and empirically evaluate the performance of our
approach on multiple problem domains modeled using
I-IDs. We demonstrate that an agent utilizing the ap-
proach gathers larger rewards on average as it better
predicts the actions of others.

The remainder of this article is structured as follows:
in Section 2, we analyze the related work. In Section 3,
we briefly review the graphical model of I-ID that un-
derlies our work, and discuss Bayesian learning in I-
IDs. In Section 4, we formally propose an information-
theoretic method for model identification and provide

relevant theoretical results. We then offer, in Section 5,
experimental results that demonstrate the performance
of our proposed technique comparing it with other ap-
proaches on three repeated games. Section 6 concludes
this article with a discussion and remarks on future
work.

2. Related Work

The benefits of utilizing graphical models for rep-
resenting agent interactions have been recognized pre-
viously. Suryadi and Gmytrasiewicz [20] used IDs to
model other agents and Bayesian learning to update the
distributions over the models based on observed be-
havior. Additionally, they also consider the case where
none of the candidate models reflect the observed be-
havior. In this situation, Suryadi and Gmytrasiewicz
show how certain aspects of the IDs may be altered
to better reflect the observed behavior. In comparison,
we seek to find the underlying dependencies that may
exist between candidate models and the true model.

More recently, MAIDs [12] and NIDs [9] extend
IDs to multiagent settings. MAIDs objectively ana-
lyze the game, efficiently computing the Nash equi-
librium profile by exploiting the independence struc-
ture. NIDs extend MAIDs to include agents’ uncer-
tainty over the game being played and over models of
the other agents. MAIDs provide an analysis of the
game from an external viewpoint and the applicability
of both is limited to single step play in static games.
NIDs collapse into MAIDs and both focus on solu-
tions that are in Nash equilibrium. While I-IDs could
be seen as NIDs, they model the subjective decision-
making problem of an agent, and their dynamic exten-
sions, I-DIDs [7] model interactions that are extended
over time.

Bayesian learning is widely used for identifying
agents’ strategies in multiagent interactions. Gmy-
trasiewicz et al. [10] used a Bayesian method to update
the beliefs about agent models within the recursive
modeling framework. Zeng and Sycara [22] learned
agents’ behaviors through Bayesian updates in a nego-
tiation process. A more sophisticated framework using
Bayesian learning was built to learn opponent models
in automated negotiation [11]. Both these applications
demonstrate the effectiveness of Bayesian learning but
rely on a hypothesis that the strategy of an opponent
resides in a preference profiler. Recently, Madsen and
Jensen [14] implemented opponent modeling using dy-
namic influence diagrams. Their experimental results



on aGrid problem illustrate that Bayesian learning be-
comes undefined when the true model of an opponent
does not fall within the predefined model space.

Extensions of the minimax algorithm [1,19] to in-
corporate different opponent strategies (rather than just
being rational) have also been investigated. However,
this line of work focuses on improving the applicabil-
ity of the minimax algorithm and uses agent functions
as models. It assumes that the true model of the oppo-
nent is within the set of candidate models. In a some-
what different approach, Saha et al. [17] ascribe or-
thogonal Chebychev polynomials as agent functions.
They provide an algorithm to learn the coefficients of
the polynomials using the observation history. How-
ever, both the degree and the number of polynomials is
fixed a’priori thereby bounding the model space, and a
best fit function is obtained.

3. Background

We briefly describe interactive influence diagrams
(I-IDs) [7] for modeling two-agent interactions and il-
lustrate their application using a simple example. We
also discuss Bayesian learning for identifying models
in I-IDs and point out a subtle limitation which is of
significance.

3.1. Overview of I-IDs

We begin by discussing the syntax of I-IDs and the
procedure for solving them.

3.1.1. Syntax and Solution
In addition to the usual chance, decision, and util-

ity nodes, I-IDs include a new type of node called the
modelnode (hexagon in Fig. 1(a)). The probability
distribution over the model node represents an agent,
say i’s, belief over the candidate models of the other
agentj. In addition to the model node, I-IDs differ
from IDs by having a chance node,Aj , that represents
the distribution over the other agentj’s actions, and a
dashed link, called apolicy link.

The model nodeMj,l−1 contains as its values the
alternative computational models ascribed byi to the
other agentj at a lower level,l − 1. Formally, we de-
note a model ofj as mj,l−1. A model in the model
node, for example, may itself be an I-ID, in which case
the recursion terminates when a model is an ID or a
BN. If mj,l−1 is an I-ID,mj,l−1 = 〈bj,l−1, θ̂j〉, where
bj,l−1 is the belief of agentj and θ̂j is the agent’s
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Fig. 1. (a) Generic I-ID for agenti situated with one other
agentj. The hexagon is the model node whose structure
we show in(b). Members of model node may be IDs, BNs
or I-IDs themselves (m1

j , m
2
j ; not shown here for simplic-

ity) whose decision nodes are mapped to the corresponding
chance nodes (A1

j , A2
j ).

frameencompassing the action, observation, and util-
ity nodes. We observe that the model node and the
dashed policy link that connects it to the chance node,
Aj , could be represented as shown in Fig. 1(b). Once
an I-ID or ID of j is solved and the optimal decisions
are determined, the decision node is transformed into
a chance node1. The chance node has the decision al-
ternatives as possible states and a probability distri-
bution over the states. Specifically, ifOPT is the set
of optimal actions obtained by solving the I-ID (or
ID), then Pr(aj ∈ A1

j ) = 1

|OPT | if aj ∈ OPT , 0

otherwise. The different chance nodes (A1
j , A

2
j ), one

for each model, and additionally, the chance node la-
beledMod[Mj ] form the parents of the chance node,
Aj . Thus, there are as many action nodes as the num-
ber of models in the support of agenti’s belief. The
states ofMod[Mj ] denote the different models ofj.
The distribution overMod[Mj ] is i’s belief overj’s
candidate models (model weights) given the physical
stateS. The conditional probability distribution (CPD)
of the chance node,Aj , is amultiplexerthat assumes
the distribution of each of the action nodes (A1

j , A
2

j )
depending on the state ofMod[Mj]. In other words,
whenMod[Mj ] has the statem1

j , the chance nodeAj

assumes the distribution ofA1

j , andAj assumes the
distribution ofA2

j whenMod[Mj ] has the statem2
j .

Solution of level l I-ID proceeds in a bottom-up
manner, and is implemented recursively in Fig.2. We
start by solving the lower level models, which are
level l − 1 I-ID or level 0 ID (line 3). Their solu-
tions provide probability distributions over the other
agents’ actions, which are entered in the corresponding
chance nodes found in the model node of the I-ID (line

1If j ’s model is a BN, a chance node representingj ’s decisions
will be directly mapped into a chance node in the model node.



Table 1

PG game with punishment. Based on punishment,P , and
marginal return,ci, agents may choose to contribute than
defect.

i, j FC PC D

FC 2ciXT , 3
2
XT ci −

1
2
cp, ciXT − cp,

2cjXT
1
2
XT + 3

2
XT cj − 1

2
P XT + cjXT − P

PC 1
2
XT + 3

2
XT ci −

1
2
P , 1

2
XT + ciXT , 1

2
XT + 1

2
ciXT − 1

2
P ,

3
2
XT cj − 1

2
cp

1
2
XT + cjXT XT + 1

2
cjXT − P

D XT + ciXT − P , XT + 1
2
ciXT − P , XT ,

cjXT − cp
1
2
XT + 1

2
cjXT − 1

2
P XT

4). The mapping from the candidate models’ decision
nodes to the chance nodes is carried out so that ac-
tions with the largest value in the decision node are as-
signed uniform probabilities in the chance node while
the rest are assigned zero probability. Given the dis-
tributions over the actions within the different chance
nodes (one for each model of the other agent), the
I-ID is transformed into a traditional ID. During the
transformation, the CPD of the node,Aj , is populated
such that the node assumes the distribution of each of
the chance nodes depending on the state of the node,
Mod[Mj,l−1] (line 5). As we mentioned previously,
the states of the nodeMod[Mj,l−1] denote the differ-
ent models of the other agent, and its distribution is
agenti’s belief over the models ofj conditioned on the
physical state. The transformed I-ID is a traditional ID
that may be solved using the standard expected utility
maximization method (line 6) [18].

I-ID S OLUTION (levell ≥ 1 I-ID or level 0 ID)

1. If l ≥ 1 then
2. For eachm

p
j,l−1 in Mod[Mj,l−1] do

3. Recursively call algorithm with thel − 1 I-ID
(or ID) that representsmp

j,l−1

4. Map the decision node of the solved I-ID
(or ID), OPT (mp

j,l−1), to the chance nodeAp
j

5. Establish CPD of the chance nodeAj in the I-ID
6. Apply the standard expected utility maximization

method to solve the transformed I-ID

Fig. 2.Algorithm for solving a levell ≥ 1 I-ID or level 0 ID

3.1.2. Illustration
We illustrate I-IDs using an example application to

the public good (PG) game with punishment (Table 1)
explained in detail in [8]. Two agents,i and j, must
either contribute some resource to a public pot or keep

it for themselves. To make the game more interesting,
we allow agents to contribute the full (FC) or a par-
tial (PC) portion of their resources though they could
defect (D) and not make any contribution. The value
of resources in the public pot is shared by the agents
regardless of their actions and is discounted byci for
each agenti, whereci ∈ (0, 1) is the marginal private
return. As defection is a dominating action, we intro-
duce a punishmentP to penalize the defecting agents
and to promote contribution. Additionally, a non-zero
cost cp of punishing is incurred by the contributing
agents. For simplicity, we assume each agent has the
same amount,XT , of private resources and a partial
contribution is1

2
XT .

We let agentsi and j play the PG game repeat-
edly a finite number of times and aim for largest av-
erage rewards. After a round of play, agents observe
the simultaneous actions of their opponents. Except for
the observation of actions, no additional information is
shared between the agents. As discovered in field ex-
periments with humans [2], different types of agents
play PG differently. To act rationally,i ascribes can-
didate behavioral models toj. We assume the models
are graphical taking the form of IDs and BNs.

For illustration, let agenti consider four models of
j (m1

j , m2

j , m3

j , andm4

j ) in the model node at timet, as
shown in Fig. 3. The first two models,m1

j andm2
j , are

simple IDs where the chance nodeAi,〈1,··· ,t−1〉 repre-
sents the frequencies of the different actions of agenti

in the game history (from1 to timet−1). However, the
two IDs have different reward functions in the value
node. The modelm1

j has a typical low marginal private
return,cj , and represents a reciprocal agent who con-
tributes only when it expects the other agent to con-
tribute. The modelm2

j has a highcj and represents
an altruistic agent who prefers to contribute during the
play. The third model,m3

j , is a BN representing thatj’s
behavior relies on its own action in the previous time



step (Aj,t−1) andi’s previous action (Ai,t−1). m4

j rep-
resents a more sophisticated decision process. Agent
j considers not only its own andi’s actions at time
t− 1 (chance nodesAi,t−1 andAj,t−1), but also agent
i’s actions at timet − 2 (Ai,t−2). It indicates thatj re-
lies greatly on the history of the interaction to choose
its actions at timet. We point out that these four mod-
els reflect typical thinking of humans in the field ex-
periments involving PG.

The weights of the four models form the probabil-
ity distribution over the values of the chance node,
Mod[Mj]. As agenti is unaware of the true model of
j, it may begin by assigning a uniform distribution to
Mod[Mj]. Over time, this distribution is updated to re-
flect any information thati may have aboutj’s model.

3.2. Bayesian Model Identification in I-IDs

As we mentioned before,i hypothesizes a limited
number of candidate models of its opponentj, Mj =
{m1

j ,. . .,mp
j , . . .,mn

j }, and intends to ascertain the true
model,m∗

j , of j in the course of interaction. On ob-
servingj’s action, where the observation in roundt is
denoted byot

i, i may update the likelihoods (weights)
of the candidate models in the model node of the I-
ID. Gradually, the model that emerges as most likely
may be hypothesized to be the true model ofj. Here,
we explore the traditional setting,m∗

j ∈ Mj where the
true model,m∗

j , is in the model space,Mj , and move
on to the challenge where the true model is outside it,
m∗

j 6∈ Mj , in Section 4.
Let o1:t−1

i be the history of agenti’s observations up
to time t − 1. Agenti’s belief over the models ofj at

time stept−1 may be written as,Pr(Mj |o
1:t−1

i )
def
= 〈

Ai,t

Ri

Aj,t
4

Aj,t
3

Mod[Mj]
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1
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Fig. 3.Example level 1 I-ID for the repeated PG game with
four models ascribed toj. The dashed arrows represent the
mapping between decision or chance nodes inj’s models and
chance nodes in the model node.

Pr(m1

j |o
1:t−1

i ), Pr(m2

j |o
1:t−1

i ),. . .,Pr(m∗
j |o

1:t−1

i ),. . .,
Pr(mn

j |o
1:t−1

i ) 〉. If ot
i is the observation at timet,

agenti may update its belief on receiving the obser-
vation using a straightforward Bayesian process. We
show the update of the belief over some model,mn

j :

Pr(mn
j |o

1:t
i ) =

Pr(ot
i|m

n
j , o1:t−1

i )Pr(mn
j |o

1:t−1
i )

∑

mj∈Mj
Pr(ot

i|mj , o
1:t−1
i )Pr(mj)

(1)

Here,Pr(ot
i|m

n
j , o1:t−1

i ) is the probability ofj per-
forming the observed action given that its model ismn

j .
This may be obtained from the chance nodeAn

j in the
I-ID of i.

Eq. 1 provides a way for updating the weights of
models contained in the model node,Mod[Mj ], given
the observation history. In the context of the I-ID,
agenti’s belief over the other’s models updated using
the process outlined in Eq. 1 will converge in the limit.
Formally,

Proposition 1 (Bayesian Learning in I-IDs). If an
agent’s prior belief assigns a non-zero probability to
the true model of the other agent, its posterior beliefs
updated using Bayesian learning will converge with
probability 1.

Proof of Proposition 1 relies on showing that the se-
quence of the agent’s beliefs updated using Bayesian
learning is known to be a Martingale [5]. Proposition 1
then follows from a straightforward application of the
Martingale convergence theorem (§4 of Chapter 7 in
Doob [5]). Doshi and Gmytrasiewicz [6] provide more
details about this proof.

The above result does not imply that an agent’s be-
lief always converges to the true model of the other
agent. This is due to the possible presence of models of
the other agent that areobservationally equivalentto
the true model. Agentj’s models that induce identical
distributions over all possible future observation paths
are said to be observationally equivalent for agenti.
When a particular observation history obtains, agent
i is unable to distinguish between the observationally
equivalent models ofj. In other words, the observa-
tionally equivalent models generate distinct behaviors
for histories which are never observed.

Example:For an example of observationally equiv-
alent models, consider the PG game introduced pre-
viously. Let agenti consider two candidate models of
j. Suppose that as a best response to its belief, one of
j’s models leads to a strategy in which it would select
FC for an infinite number of steps, but if at any time
i choosesD, j would also do so at the next time step



and then continue withD. The other model ofj adopts
a tit-for-tat strategy, i.e.j performs the action whichi
did in the previous time step. If agenti decides to se-
lectFC an infinite number of times, then the two mod-
els ofj are observationally equivalent. Giveni’s strat-
egy, both the candidate models ofj assign a probabil-
ity 1 to the observation history{ 〈 FC,FC 〉, 〈 FC,FC
〉, . . .}, although the strategies are distinct.

4. Information-theoretic Model Identification

For practical purposes, the space of candidate mod-
els ascribed toj is often bounded. In the absence
of prior knowledge,i may be unaware whetherj’s
true model,m∗

j , is within the model space. Ifm∗
j 6∈

Mj and in the absence of observationally equiva-
lent models, Bayesian learning may be inadequate
(Pr(ot

i|m
n
j , o1:t−1

i ) in Eq. 1 may be 0 for allmn
j ). As

bounded expansions of the model space do not guaran-
tee inclusion of the true model, we seek to find a candi-
date model or a combination of models from the space,
whose predictions arerelevantin determining actions
of j.

4.1. Relevant Models and Mutual Information

As the true model may lie outside the model space,
our objective is to identify candidate models whose
predictions exhibit a mutual pattern with the observed
actions of the other agent. We interpret the existence of
a mutual pattern as evidence that the candidate model
shares some behavioral aspects with the true model.
In order to do this, we introduce a notion ofrelevance
between a model inMj and the true model,m∗

j .
Let a∗

j be the observed action of the other agentj

andā∗
j denote any other action from its set of actions.

DefinePrmn
j
(an

j |a
∗
j ) as the probability that a candi-

date model ofj, mn
j , predicts actionan

j whena∗
j is

observed in the same time step.

Definition 1 (Relevant Model). If for a model,mn
j ,

and some observed action,a∗
j , there exists an action,

an
j : Prmn

j
(an

j |a
∗
j ) > Prmn

j
(an

j |ā
∗
j ), for all ā∗

j , where
an

j ∈ OPT (mn
j ) and the subscriptmn

j denotes the
generative model, thenmn

j is a relevantmodel.

Definition 1 formalizes the intuition that a relevant
model predicts an action that is likely to correlate with
a particular observed action of the other agent. In pre-
dictingan

j , modelmn
j may utilize the past observation

history. We note that the above definition generalizes

to a relevant combination of models in a straightfor-
ward way. Given Def. 1, we need an approach that as-
signs large probabilities to the relevant model(s) in the
nodeMod[Mj] over time. We proceed to show one
way of computing these probabilities.

We begin by observing that the chance nodes,
Mod[Mj ], Aj and the mapped chance nodes,A1

j , A
2
j , . . .,

form a BN, as shown in Fig. 4(a). We seek the weights
of models inMod[Mj ] that would allow the distribu-
tion overAj to resemble that of the observed actions.
Subsequently, we may map the problem to one of clas-
sifying the predicted actions of the individual models
with the observed action ofj, and using the classifica-
tion function for deriving the model weights. Because
the candidate models are independent of each other,
the BN isnaiveand the classification reduces to learn-
ing the parameters (CPDs) of the naive BN using say,
the maximum likelihood approach with Dirichlet pri-
ors. For multiple agents, the models may exhibit de-
pendencies in which case we learn a general BN. We
show the equivalent naive BN in Fig. 4(b).

Aj
2Aj

1

Mod[Mj]

Aj

Aj
nmj

1

mj
2 mj

n

(a)

Aj
2Aj

1

Aj

Aj
n

(b)

.

6

5

4

3

2

1

Time

FCD…FCFC

FCPC…PCD

DPC…FCFC

PCD…PCPC

FCFC…PCD

……………

PCD…DPC

AjAj
n…Aj

2Aj
1

.

6

5

4

3

2

1

Time

…

…

…

…

…

……………

…

AjAj
n…Aj

2Aj
1

(c)

Fig. 4.(a) The BN in the I-ID of agenti; (b) The equivalent
naive BN that we use for classifying the outcomes of the
candidate models to the observation history;(c) Example of
the training set used for learning the naive BN for PG. The
actions in columnAj are observations ofi, while remaining
columns are obtained from models.

As relevant models hint at possible dependencies
with the true model in terms of predicted and observed
actions, we utilize themutual information(MI) [4] be-
tween the chance nodesAj and say,An

j , as a measure
of the likelihood of the model,mn

j , in Mod[Mj]. MI
is a well-known way of quantifying the mutual depen-
dency between two random variables.



Definition 2 (Mutual Information). The mutual infor-
mation (MI) of the true model,m∗

j and a candidate
model,mn

j , is computed as:

MI(mn
j , m∗

j )
def
= Pr(An

j , Aj)log[
Pr(An

j ,Aj)

Pr(An
j
)Pr(Aj)

]

= Pr(An
j |Aj)Pr(Aj)log[

Pr(An
j |Aj)

Pr(An
j
)

]
(2)

Here,An
j is the chance node mapped from the model,

mn
j , andAj is the chance node for the observed ac-

tions generated by the true model,m∗
j .

The termsPr(An
j |Aj), Pr(An

j ) and Pr(Aj) are
calculated from the CPDs of the naive BN. Note that
the distribution,Pr(An

j |Aj), implies possible rela-
tions between observed and predicted actions in the
history. Here, the observed history ofj’s actions to-
gether with the predictions of the models over time
may serve as the training set for learning the parame-
ters of the naive BN. We show an example training set
for PG in Fig. 4(c). Values of the columns,A1

j , A2

j , . . .,
An

j are obtained by solving the corresponding mod-
els and sampling the resulting distributions if needed.
We utilize the normalized MI at each time step as the
model weights in the chance node,Mod[Mj].

Example: We show an example training set for PG
in Fig. 4(c). Notice that:

Prm1
j
(A1

j = PC|Aj = PC) =
Pr(A1

j=PC,Aj=PC)

Pr(Aj=PC)

= 2/6
2/6

= 1

Prm1
j
(A1

j = PC|Aj = FC) =
Pr(A1

j=PC,Aj=F C)

Pr(Aj=F C)

= 0/6
3/6

= 0

Prm1
j
(A1

j = PC|Aj = D) =
Pr(A1

j=PC,Aj=D)

Pr(Aj=D)

= 0/6
1/6

= 0

Therefore, we getPrm1
j
(A1

j = PC|Aj = PC) >

Prm1
j
(A1

j = PC|Aj = FC or D). Hence, from Def-

inition 1 we conclude that the modelm1

j that maps to
A1

j is a relevant model so far. Additionally,

MI(m1
j , m

∗
j ) = Pr(A1

j |Aj)Pr(Aj)log
Pr(A1

j |Aj)

Pr(A1
j
)

=
∑

aj

∑

a1
j
∈OPT (m1

j
)[Prm1

j
(a1

j |aj)Pr(aj)

log
Pr

m1
j
(a1

j |aj)

Pr
m1

j
(a1

j
)

]

= 1 · log[ 1
2
6
· 2
6

] + 2
6
· log[

2
6

3
6
· 2
6

] + 1 · log[ 1
3
6
· 2
6

]

+ 1
6
· log[

1
6

1
6
· 2
6

] = 0.551 (after normalization)

4.2. Theoretical Results

Obviously, modelmn
j is irrelevant ifPrmn

j
(an

j |a
∗
j )

= Prmn
j
(an

j |ā
∗
j ) for eachan

j ∈ OPT (mn
j ) and allā∗

j .
Then, we trivially obtain the next proposition.

Proposition 2. If mn
j is irrelevant,MI(mn

j , m∗
j ) = 0.

Proof. We may expressMI(mn
j , m∗

j ) in terms ofPrmn
j
(an

j |a
∗
j )

andPrmn
j
(an

j |ā
∗
j ) as below:

MI(mn
j , m∗

j ) =
∑

a1
j
∈OPT (mn

j
)

{

Prmn
j
(an

j |a
∗
j )Pr(a∗

j )

log[
Prmn

j
(an

j |a∗
j )

Prmn
j

(an
j
|a∗

j
)Pr(a∗

j
)+Prmn

j
(an

j
|ā∗

j
)Pr(ā∗

j
)
]

+Prmn
j
(an

j |ā
∗
j )Pr(ā∗

j )

log[
Prmn

j
(an

j |ā∗
j )

Prmn
j

(an
j
|a∗

j
)Pr(a∗

j
)+Prmn

j
(a1

j
|ā∗

j
)Pr(ā∗

j
)
]

}

(3)

SincePrmn
j
(an

j |a
∗
j ) = Prmn

j
(an

j |ā
∗
j ), we havePrmn

j
(an

j |a
∗
j )

Pr(a∗
j ) + Prmn

j
(an

j |ā
∗
j )Pr(ā∗

j )=Prmn
j
(an

j |a
∗
j )=

Prmn
j
(an

j |ā
∗
j ). Consequently, thelog(·) term in Eq. 3 be-

comes zero, which leads toMI(mn
j , m∗

j ) = 0.

As MI is non-negative, Proposition 2 implies that
relevant models are assigned a higher MI than irrele-
vant ones. To enable further analysis, we compare the
relevance among candidate models.

Definition 3 (Relevance Ordering). Let a∗
j be some

observed action of the other agentj. If for two rele-
vant models, such thatPrmn

j
(an

j |a
∗
j ) > Prm

p

j
(ap

j |a
∗
j )

andPrmn
j
(an

j |ā
∗
j ) < Prm

p

j
(ap

j |ā
∗
j ), for all ā∗

j where

an
j ∈ OPT (mn

j ), a
p
j ∈ OPT (mp

j ), and ā∗
j denotes

any other action of the true model, thenmn
j is a more

relevantmodel thanmp
j .

Given Def. 3, we show that models which aremore
relevantare assigned a higher MI. Proposition 3 for-
malizes this observation. The proof below adapts [13].

Proposition 3. If mn
j is a more relevant model than

m
p
j as per Definition 3 andm∗

j is the true model, then
MI (mn

j , m∗
j ) > MI (mp

j , m
∗
j ).



Proof. We further expand Eq. 3 and expressMI(mn
j , m∗

j )
as below:

MI(mn
j , m∗

j ) =
∑

an
j
∈OPT (mn

j
)

{

Prmn
j
(an

j |a
∗
j )Pr(a∗

j )

log[ 1

Pr(a∗
j
)+

P rmn
j

(an
j
|ā∗

j
)

P rmn
j

(an
j
|a∗

j
)
Pr(ā∗

j
)

]

+Prmn
j
(an

j |ā
∗
j )Pr(ā∗

j )

log[ 1
P rmn

j
(an

j
|a∗

j
)

P rmn
j

(an
j

|ā∗
j
)
Pr(a∗

j
)+Pr(ā∗

j
)

]

}

(4)

Notice that Prmn
j
(an

j |a
∗
j ) > Prmn

j
(an

j |ā
∗
j ), we get

Pr(a∗
j ) +

Prmn
j

(an
j |ā∗

j )

Prmn
j

(an
j
|a∗

j
)
Pr(ā∗

j ) < 1 since Pr(a∗
j ) +

Prmn
j

(an
j |ā∗

j )

Prmn
j

(an
j
|ā∗

j
)
Pr(ā∗

j ) = 1 , similarly
Prmn

j
(an

j |a∗
j )

Prmn
j

(an
j
|ā∗

j
)
Pr(a∗

j )+

Pr(ā∗
j ) > 1. Hence, in Eq. 4, the first term,Prmn

j
(an

j |a
∗
j )

Pr(a∗
j ) log[ 1

Pr(a∗
j
)+

P rmn
j

(an
j
|ā∗

j
)

P rmn
j

(an
j
|a∗

j
)
Pr(ā∗

j
)

] > 0 (since the

base is 2 inlog defined in MI), while the second term,
Prmn

j
(an

j |ā
∗
j )

Pr(ā∗
j ) log[ 1

P rmn
j

(an
j

|a∗
j
)

P rmn
j

(an
j

|ā∗
j
)
Pr(a∗

j
)+Pr(ā∗

j
)

] < 0.

Then, for a fixedPr(a∗
j ), MI(mn

j , m∗
j ) is a mono-

tonically increasing function ofPrmn
j
(an

j |a
∗
j ) for a fixed

Prmn
j
(an

j |ā
∗
j ), and a monotonically decreasing function of

Prmn
j
(an

j |ā
∗
j ) for a fixed Prmn

j
(an

j |a
∗
j ) since the second

term is less than zero in Eq. 4. Therefore, substituting
Prmn

j
(an

j |a
∗
j ) and Prmn

j
(an

j |ā
∗
j ) with Prm

p
j
(ap

j |a
∗
j ) (<

Prmn
j
(ap

j |a
∗
j )) and Prm

p
j
(ap

j |ā
∗
j ) (> Prmn

j
(an

j |ā
∗
j )) re-

spectively, results inMI(mn
j , m∗

j ) > MI(mp
j , m∗

j ).

For the sake of completeness, we show that if the
true model,m∗

j , is contained in the model space, our
approach analogous to Bayesian learning will con-
verge.

Proposition 4 (Convergence). Given that the true
modelm∗

j ∈ Mj and is assigned a non-zero probabil-
ity, the normalized distribution of mutual information
of the models converges with probability 1.

Proof. The proof is intuitive and relies on the fact that
the estimated parameters of the naive Bayes converge
to the true parameters as the observation history grows
(see chapter 3 of Rennie [16] for the proof when the
maximum a posterioriapproach is used for parame-
ter estimation). Proposition 4 then follows because the
termsPr(An

j |Aj), Pr(An
j ) andPr(Aj) used in cal-

culating the MI are obtained from the parameter esti-
mates of the naive BN.

Analogous to Bayesian learning, the distribution of
MI may not converge to the true model in the presence
of MI-equivalentmodels inMj. In particular, the set of
MI-equivalent models is larger and includes observa-
tionally equivalent models. However, consider the ex-
ample wherej’s true strategy is to always selectFC,
and let Mj include the true model and a candidate
model that generates the strategy of always selecting
D. Though observationally distinct, the two candidate
models are assigned equal MI due to the perceived de-
pendency between the action of selectingD by the can-
didate and selectingFC by the true one. However, in
nodeAj , the actionD is classified to the observed,FC.

Model Weight Update
Input : I-ID of agenti, observationot

i , training setTr

1. Agenti receives an observationot
i

2. Solve the models,mp
j (p = 1, . . . , n) to get actions for the

chance nodesAp
j (p = 1, · · · , n)

3. Add (A1
j ,· · · , A

p
j , · · · , An

j , ot
i) as a sample into

the training setTr
4. Learn the parameters of thenaive BNincluding the chance

nodes,A1
j ,. . ., An

j , andAj

5. For eachA
p
j (p = 1, . . . , n) do

6. ComputeMI(mp
j , m∗

j ) using Eq. 2
7. ObtainPr(Aj |A

p
j ) from the learnednaive BN

8. Populate CPD of the chance nodeAj in the I-ID
usingPrm

p
j
(Aj |A

p
j )

9. NormalizeMI(mp
j , m∗

j )

10. Populate CPD of the chance nodeMod[Mj ] usingMI

Fig. 5. Algorithm revises the model weights in the model
node,Mod[Mj ], on observingj’s action using MI as a mea-
sure of likelihood, and populates CPDs of the chance node,
Aj , using the learned naive BN.

4.3. Algorithm

We briefly outline the algorithm for model identifi-
cation in Fig. 5. In each roundt, agenti receives an ob-
servation of its opponentj’s action (line 1). This obser-
vation together with solutions from candidate models
of j (line 2), constitute one sample in the training set
Tr (line 3; see Fig. 4(c)). The training set is used for
learning the parameters of the naive BN (line 4) and
subsequently for computing the model weights in the
I-ID. Given the learned parameters, we compute the
MI of each candidate modelmp

j andm∗
j (line 6). The

posterior probabilities (from line 7) are also used in the
CPD of the chance nodeAj in the I-ID (line 8). No-



tice that the CPD,Prm
p

j
(Aj |A

p
j ), describes the rela-

tion between the predicted actions by candidate mod-
els and the observed actions. In other words, it reflects
the classification of the predicted actions. The normal-
ized MI is assigned as the distribution of the chance
nodeMod[Mj ] in the I-ID (line 10). This distribution
represents the updated weight over the candidate mod-
els ofj. Given the updated model weights and the pop-
ulated CPDs of the chance nodeAj , we solve the I-ID
of agenti to obtain its action.

5. Performance Evaluation

We evaluate the effectiveness of the algorithm out-
lined in Fig. 5 in the context of three well-known re-
peated games: the repeated PG game, repeated one-
shot negotiations as in [17] though simplified, and re-
peated Rock-Paper-Scissor games. As we mentioned
previously, if the true model falls outside the model
space (m∗

j 6∈ Mj), Bayesian learning (BL) may be in-
adequate. A simple adaptation of BL (A-BL) would be
to restart the BL process when the likelihoods become
zero by assigning candidate models prior weights us-
ing the frequency with which the observed action
has been predicted by the candidate models so far.
Additionally, we utilize another information-theoretic
measure, the KL-Divergence (KL), which is a well-
known pseudo-distance measure between two proba-
bility distributions, to assign the likelihood of a can-
didate model. Lower is the KL between distributions
overAn

j andAj , larger is the likelihood of the corre-
sponding model,mn

j .
We let agentsi and j play 1000 rounds of each

game and reporti’s average rewards. To facilitate anal-
ysis, we also show the changing model weights across
rounds that are assigned to the relevant and true models
for both cases:m∗

j ∈ Mj andm∗
j 6∈ Mj.

5.1. Repeated Public Good Game

In the PG game, we utilize the I-ID in Fig. 3 to
model the interaction. Agenti plays with the opponent
j multiple rounds of PG and aims to gain larger re-
wards in the long run by discoveringj’s true behav-
ioral model. For the setting,m∗

j ∈ Mj, we let the
model space,Mj , contain three models,m1

j , m3

j , and
m4

j , and let agentj play using the true model,m4

j .
Fig. 6(a) demonstrates the favorable performances of
MI, BL and A-BL, which quickly converge to the true
model and gain almost the same average rewards. Note

that KL assigns non-zero weights to other models as
the distribution generated by those candidates is some-
what close to that of the true model.

For evaluation of the case wherem∗
j 6∈ Mj , i con-

siders three candidate models ofj, m2

j , m3

j , andm4

j ,
while j uses the reciprocal modelm1

j . We observe that
MI significantly outperforms other updating methods
obtaining the largest average rewards over the long run
(Fig. 6(b)). This is because MI finds the deliberative
model,m4

j , to be most relevant to the true model,m1
j .

Model m1

j expectsi to perform its most frequently
observed action and matches it, an aspect that is best
shared bym4

j , which relies the most on other’s actions.
We note that MI does not monotonically increase but
assigns the largest weight to the most relevant model
at any point in time. Notice that bothm1

j andm4

j con-
sider actions of the other agent, and identical actions of
the agents as promoted by a reciprocal model are more
valuable. Both the A-BL and KL methods settle on the
altruistic model,m2

j , as the most likely.

j, i A R C
Low -1 1 1
Mid 1 0 1

High 3 1 -1
(a)

Negi,t

Ri

Offerj,t
3

Mod[Mj]

Offerj,t

Riskj,t
3

Urgj,t
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mj
1 mj

2 mj
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Offerj,t
4

Riskj,t
4

Urgj,t
4

Negi,t-1

Offerj,t
3Offerj,t

1 Offerj,t
2

Offerj,t
4

(b)

Fig. 7.(a) Single shot play of a negotiation between the seller
i and buyerj. The numbers represent the payoffs of the seller
i. (b) I-ID for the seller in the negotiation with four models
ascribed to the buyerj.

5.2. Repeated One-shot Negotiations

A seller agenti wants to sell an item to a buyer
agentj. The buyer agent bargains with the seller and
offers a price that ranges fromLow, Mid, to High.
The seller agent decides whether toaccept the offer
(A), to reject it immediately (R), or tocounter the
offer (C). If i counters the offer, it expects a new price
offer from agentj. Once the negotiation is completed
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Fig. 6. Performance profiles for both, the traditional setting,m∗
j ∈ Mj , and the realistic case,m∗

j 6∈ Mj , in the repeated PG
game. Notice that, for the case ofm∗

j 6∈ Mj , the model weight assigned using BL drops to zero.

successfully or fails, the agents restart a new one on
a different item; otherwise, they continue to bargain.
Figure 7(a) shows the payoffs of the seller agent when
interacting with the buyer. The seller aims to profit by
getting large rewards (payoff) in the bargaining pro-
cess. As in most cases of negotiations, here the seller
and the buyer are unwilling to share their preferences
with the other. For example, from the perspective of
the seller, some types of buyer agents have different
bargaining strategies based on their risk preferences.
The ability to identify the buyer’s true model enables
the seller agent to choose rational actions in the nego-
tiation.

The idea of using probabilistic graphical models
in multiagent negotiation was previously explored
in [15]. In a similar vein, we model agenti using the
I-ID shown in Fig. 7(b). Analogous to [17], we con-
sider four types of the buyer agentj. Each of them is
represented using a BN. They differ in the probability
distributions for the chance nodesRiskthat represents
the buyer’s risk attitude andUrg, which represents the
urgency of the situation to the agent. Let modelm1

j

represent a buyer of arisk aversetype. A risk averse
agent has an aversion to losing the deal and hence al-
ways proposes a high offer. The second model,m2

j , is
a risk seekingbuyer that adopts a risky strategy by in-

tending to offer a low price. Modelm3

j is arisk neutral
buyer that balances its low and high offers in the nego-
tiation. The final model,m4

j , is a buyer that is risk neu-
tral but in an urgent situation, and is eager to acquire
the item. Consequently, it is prone to offering a high
price, though its actions also depend on the seller. Note
that the chance nodeNegi,t−1 representsi’s previous
action in the negotiation.

Let agenti consider three candidate models forj,
m1

j , m2
j , andm3

j , and agentj uses modelm1
j for the

setting,m∗
j ∈ Mj . Fig. 8(a) reveals that all the differ-

ent updating methods correctly identify the true model
after some steps and gather similar rewards. Asj is
risk averse, it often offers a high price that the seller
chooses to accept incurring a payoff of 3.

In the case wherem∗
j 6∈ Mj , agentj plays the game

using the model,m4

j , and i assumes the remaining
three models as candidates. Notice that MI eventually
assigns the largest weight (≈ 0.63) to the risk averse
agent,m1

j , that always offers a high price in the ne-
gotiation. This behavior is consistent with the model,
m4

j , that represents an urgent buyer who is also prone
to offering a high price. Consequently, MI obtains bet-
ter average rewards than other methods. The remaining
two candidate models are MI-equivalent. In compari-
son, both KL and A-BL methods eventually identify
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Fig. 8.Performance profiles and the changing model weights for the two cases while repeatedly playing the negotiation game.

the risk neutral agentm3
j , which leads to lower average

rewards.

5.3. Rock-Paper-Scissor Games

Two agents,i andj, play Rock-Paper-Scissor (RPS;
also called RoShamBo) game repeatedly a finite num-
ber of times and aim for winning the most number of
times thereby gathering larger average rewards (pay-
off). After each round, only the simultaneous actions
of agents are exhibited to each other. The payoffs in
the game are as shown in Table 2.

Table 2

Payoff for agents,i andj, in a RPS game.

i, j Rock Paper Scissor

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissor (-1,1) (1,-1) (0,0)

We model four types of agentj from the perspec-
tive of agenti in the experiment. The I-ID in Fig. 9
shows that agenti considers four models ofj (m1

j ,
m2

j , m3
j , andm4

j ) in the model node at timet. The
first model,m1

j , is a simple ID where the chance node
Ai,〈1,··· ,t−1〉 models the frequencies of agenti’s dif-
ferent actions in the history (from1 to time t − 1).

Ai,t

Ri

Aj,t
4

Aj,t
3

Mod[Mj]
Aj,t

Aj,t
1

Rj

Ai,1...t-1

Aj,t
2

Rj

Ai,t-1
Aj,t-2

Aj,t-1Ai,t-1

Aj,t-1Ai,t-1Ai,t-2

mj
1 mj

2

mj
3

mj
4

Aj,t
2

Aj,t
1

Aj,t
3 Aj,t

4

Fig. 9. Example I-ID for the Rock-Paper-Scissor game with four
models ascribed toj.

The second ID,m2
j , has a different structure: Agent

j’s belief overi’s actions depends onj’s behaviors in
the previous time stept − 1. Thus agentj thinks that
agenti may play according to whatj plays in the pre-
vious time step. The remaining two models are BNs
that reflectj’s more deliberative behaviors. The third
model,m3

j , representsj’s behavior of counting both its
own actions in the previous time step (Aj,t−1) andi’s
previous actions (Ai,t−1). The final modelm4

j shows
j has a more sophisticated decision process. Not only
agentsi andj’s behaviors at timet − 1 (chance nodes
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Fig. 10.Performance profiles and revised model weights for the two cases for the RPS game.

Ai,t−1 andAj,t−1) but also agenti’s actions at time
t − 2 (Ai,t−2) are considered when agentj decides its
behaviors at timet. Note that the strategies reflected in
these four models are often used in competitive RPS
tournaments.

We assume that for case 1, agentj plays the true
model,m4

j , andi uses a model space consisting of the
three models,{m2

j , m3
j , m4

j}. In Fig. 10(a), we show
the average rewards obtained byi as well as the vary-
ing model weights (assigned tom4

j ). As we may ex-
pect, both the BL and A-BL methods quickly identify
the true model and therefore gather large average re-
wards. The MI method also identifiesm4

j among the
candidate models after a few more steps, and gradually
gains identical rewards as BL from play. Notice that
KL does not perform as well because candidate models
other thanm4

j are assigned non-zero model weights.
However, it does assign the largest likelihood tom4

j .
For case 2 (Fig. 10(b)), we let agentj use the model

m3

j while i hypothesizes the remaining three models
for j. We first observe that MI gains the largest aver-
age reward. MI eventually identifies the model,m4

j , as
the most relevant. This is intuitive because, analogous
to the true modelm3

j , the modelm4

j also deliberates
actions based on both opponents’ and its own previous
behaviors. BL filters out all candidate models quickly
due to contradicting observations (notice the drop to

zero form4
j ). Both A-BL and KL findm2

j as the most
likely.

6. Discussion

I-IDs use Bayesian learning to update beliefs with
the implicit assumption that true models of other
agents are contained in the model space. As model
spaces are often bounded in practice, true models of
others may not be present in the space. We show that
distribution of MI of the candidate models learned by
classifying their predictions exhibits a performance
comparable to Bayesian learning when the true model
is within the set of candidate models. More impor-
tantly, the MI approach improves on other heuristic ap-
proaches for the plausible case that true model is out-
side the model space. Thus, the approach shows po-
tential as a general purpose candidate technique for
identifying models when we are uncertain whether the
model space is exhaustive. However, an important lim-
itation is that the space of MI-equivalent models is
large. While it may not affect performance, it merits
further investigation.
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