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Abstract. Interactive influence diagrams (I-IDs) offer a transpagemt intuitive representation for the decision-making feob

in multiagent settings. They ascribe procedural model& siscinfluence diagrams and I-IDs to model the behavior ofrothe
agents. Procedural models offer the benefit of understgrit others arrive at their behaviors. Accurate behavioradels

of others facilitate optimal decision-making in multiagysettings. However, identifying the true models of otheerag is a
challenging task. Given the assumption that the true maddsleoother agent lies within the set of models that we comside

may utilize standard Bayesian learning to update the hield of each model given the observation histories of otlaet®ns.
However, as model spaces are often bounded, the true mddelseos may not be present in the model space. We then seek to
identify models that areelevantto the observed behaviors of others and show how the agenkemiayto identify these models.

We evaluate the performance of our method on three repeatedgand provide theoretical and empirical results in stippo
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1. Introduction

Interactive influence diagrams (I-IDs) [7] are graph-
ical models for decision making in uncertain mul-
tiagent settings. I-IDs generalize influence diagrams
(IDs) [21] to make them applicable to settings shared
with other agents, who may themselves act, ob-
serve and update their beliefs. 1-IDs and their se-
quential counterparts, interactive dynamic influence
diagrams (I-DIDs) [7], contribute to a growing line
of work that includes multiagent influence diagrams
(MAID) [12], and more recently, networks of influence
diagrams (NID) [9]. All of these formalisms seek to
explicitly and transparently model the structure that is
often present in real-world problems by decomposing
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the situation into chance and decision variables, and
the dependencies between the variables.

I-IDs ascribe procedural models to other agents
— these may be IDs, Bayesian networks (BN), or |-
IDs themselves leading to recursive modeling. Besides
providing intuitive reasons for the strategies, procedu-
ral knowledge may help preclude certain strategies of
others, deeming them impossible because of the struc-
ture of the environment. As agents act and make obser-
vations, beliefs over others’ models are updated. With
the implicit assumption that the true model of other
is contained in the model space, I-IDs use Bayesian
learning to update beliefs, which gradually converge.

However, in the absence of this assumption, Bayesian
learning is not guaranteed to converge and in fact, may
become undefined. This is significant because though
there are uncountably infinite numbers of agent func-

1570-1263/09/$17.0® 2009 — |0S Press and the authors. All rights reserved



tions, there are only countable computable models. relevanttheoretical results. We then offer, in Section 5,
Hence, theoretically it is likely that an agent’s true experimental results that demonstrate the performance
model may not be within the computable model space. of our proposed technique comparing it with other ap-
This insight is not new — it motivated Suryadi and proaches onthree repeated games. Section 6 concludes
Gmytrasiewicz [20] to modify the IDs ascribed to oth-  this article with a discussion and remarks on future
ers when observations of other’s behaviors were incon- work.
sistent with the model space during model identifica-
tion.

An alternative to considering candidate modelsisto 2. Related Work
restrict the models to those represented using a mod-
eling language and directly learn, possibly approxi-  The benefits of utilizing graphical models for rep-
mate, models expressed in the language. For example,resenting agent interactions have been recognized pre-
Carmel and Markovitch [3] learn finite state automa- viously. Suryadi and Gmytrasiewicz [20] used IDs to
tons to model agents’ strategies, and Sathal. [17] model other agents and Bayesian learning to update the
learn Chebychev polynomials to approximate agents’ distributions over the models based on observed be-
decision functions. However, the representations are havior. Additionally, they also consider the case where
non-procedural and the learning problems complex.  none of the candidate models reflect the observed be-

In this article, we consider the realistic case that the havior. In this situation, Suryadi and Gmytrasiewicz
true model may not be within the bounded model space show how certain aspects of the IDs may be altered
of the other agentin an I-ID. In this context, we present to better reflect the observed behavior. In comparison,
a technique that identifies a model or a weighted com- we seek to find the underlying dependencies that may
bination of models whose predictions asdevantto exist between candidate models and the true model.
the observed action history. Using previous observa-  More recently, MAIDs [12] and NIDs [9] extend
tions of others’ actions and predictions by candidate IDs to multiagent settings. MAIDs objectively ana-
models, we learn how the predictions may relate to the lyze the game, efficiently computing the Nash equi-
observation history. In other words, we learnclas- librium profile by exploiting the independence struc-
sify the predictions of the candidate models using the ture. NIDs extend MAIDs to include agents’ uncer-
previous observation history as the training set. Thus, tainty over the game being played and over models of
we seek the hidden function that possibly relates the the other agents. MAIDs provide an analysis of the
candidate models to the true model. game from an external viewpoint and the applicability

We then update the likelihoods of the candidate of both is limited to single step play in static games.
models. As a Bayesian update may be inadequate, we NIDs collapse into MAIDs and both focus on solu-
utilize the similarity between the predictions of a can- tions that are in Nash equilibrium. While 1-IDs could
didate model and the observed actions as the likeli- be seen as NIDs, they model the subjective decision-
hood of the model. In particular, we measure thie- making problem of an agent, and their dynamic exten-
tual informationof the predicted actions by a candi- sions, I-DIDs [7] model interactions that are extended
date model and the observed actions. This provides a over time.
natural measure of the dependence between the can- Bayesian learning is widely used for identifying
didate and true models, possibly due to some shared agents’ strategies in multiagent interactions. Gmy-
behavioral aspects. We theoretically analyze the prop- trasiewicz et al. [10] used a Bayesian method to update
erties and empirically evaluate the performance of our the beliefs about agent models within the recursive
approach on multiple problem domains modeled using modeling framework. Zeng and Sycara [22] learned
I-IDs. We demonstrate that an agent utilizing the ap- agents’ behaviors through Bayesian updates in a nego-
proach gathers larger rewards on average as it bettertiation process. A more sophisticated framework using
predicts the actions of others. Bayesian learning was built to learn opponent models

The remainder of this article is structured as follows:
in Section 2, we analyze the related work. In Section 3,
we briefly review the graphical model of I-ID that un-
derlies our work, and discuss Bayesian learning in |-
IDs. In Section 4, we formally propose an information-
theoretic method for model identification and provide

in automated negotiation [11]. Both these applications
demonstrate the effectiveness of Bayesian learning but
rely on a hypothesis that the strategy of an opponent
resides in a preference profiler. Recently, Madsen and
Jensen [14] implemented opponent modeling using dy-
namic influence diagrams. Their experimental results



on aGrid problem illustrate that Bayesian learning be-
comes undefined when the true model of an opponent
does not fall within the predefined model space.
Extensions of the minimax algorithm [1,19] to in-
corporate different opponent strategies (rather than just
being rational) have also been investigated. However,
this line of work focuses on improving the applicabil-
ity of the minimax algorithm and uses agent functions

as models. It assumes that the true model of the oppo-

nent is within the set of candidate models. In a some-
what different approach, Saha et al. [17] ascribe or-
thogonal Chebychev polynomials as agent functions.
They provide an algorithm to learn the coefficients of

the polynomials using the observation history. How-

ever, both the degree and the number of polynomials is
fixed a’priori thereby bounding the model space, and a
best fit function is obtained.

3. Background

We briefly describe interactive influence diagrams
(I-1Ds) [7] for modeling two-agent interactions and il-
lustrate their application using a simple example. We
also discuss Bayesian learning for identifying models
in I-IDs and point out a subtle limitation which is of
significance.

3.1. Overview of I-IDs

We begin by discussing the syntax of I-IDs and the
procedure for solving them.

3.1.1. Syntax and Solution

In addition to the usual chance, decision, and util-
ity nodes, I-IDs include a new type of node called the
modelnode (hexagon in Fig.(4)). The probability
distribution over the model node represents an agent,
say's, belief over the candidate models of the other
agentj. In addition to the model node, I-IDs differ
from IDs by having a chance nodg,, that represents
the distribution over the other agefi¢ actions, and a
dashed link, called policy link

The model nodel/;;_; contains as its values the
alternative computational models ascribedilip the
other ageny at a lower level] — 1. Formally, we de-
note a model ofj asm;;—;. A model in the model
node, for example, may itself be an I-1D, in which case
the recursion terminates when a model is an ID or a
BN. If mji—1 is an |'|D,mj_’l,1 = <bj,l717 éj>, where
bji—1 is the belief of ageny and éj is the agent’s

Fig. 1. (a) Generic I-ID for agent situated with one other
agentj. The hexagon is the model node whose structure
we show in(b). Members of model node may be IDs, BNs
or |-IDs themselvesri}, m?; not shown here for simplic-
ity) whose decision nodes are mapped to the corresponding
chance nodesq}, A?).

frameencompassing the action, observation, and util-
ity nodes. We observe that the model node and the
dashed policy link that connects it to the chance node,
A;, could be represented as shown in Fig. 1(b). Once
an I-ID or ID of j is solved and the optimal decisions
are determined, the decision node is transformed into
a chance node The chance node has the decision al-
ternatives as possible states and a probability distri-
bution over the states. Specifically,(fPT" is the set
of optimal actions obtained by solving the I-ID (or
ID), then Pr(a; € Aj) = ﬁ if a;j € OPT, 0
otherwise. The different chance nodes;(A?), one
for each model, and additionally, the chance node la-
beled M od[M;] form the parents of the chance node,
A;. Thus, there are as many action nodes as the num-
ber of models in the support of ageid belief. The
states ofM od[M;] denote the different models gf
The distribution ovetM od[}M;] is i’s belief overj’'s
candidate models (model weights) given the physical
stateS. The conditional probability distribution (CPD)
of the chance noded;, is amultiplexerthat assumes
the distribution of each of the action nodes;( A%)
depending on the state dff od[);]. In other words,
whenMod[M;] has the staten, the chance nodd;
assumes the distribution of}, and A; assumes the
distribution of A? whenMod[M;] has the staten?.
Solution of levell I-ID proceeds in a bottom-up
manner, and is implemented recursively in Fig.2. We
start by solving the lower level models, which are
level I — 1 I-ID or level 0 ID (line 3). Their solu-
tions provide probability distributions over the other
agents’ actions, which are entered in the corresponding
chance nodes found in the model node of the I-ID (line

1if j’s model is a BN, a chance node representjisydecisions
will be directly mapped into a chance node in the model node.



Table 1

PG game with punishment. Based on punishméhtand
marginal returnc;, agents may choose to contribute than

defect.
i FC PC D
FC 2¢; X, %XTCZ' — %cp, c; X1 — cp,

QC]'XT %XT =+ %XTC]' - %P X7 + CjXT — P

PC| iX7+ 2Xpe;— 3P, iXr+eXr, iXr+icaxr-1ip,
%XTCJ' - %Cp %XT + CjXT XT + %C]'XT — P

D Xr+caXr—P, X7+ 2e;iXr — P, Xr,

c; X1 —c¢p %XT + %C]'XT - %P Xr

4). The mapping from the candidate models’ decision

nodes to the chance nodes is carried out so that ac-
tions with the largest value in the decision node are as-

signed uniform probabilities in the chance node while
the rest are assigned zero probability. Given the dis-
tributions over the actions within the different chance
nodes (one for each model of the other agent), the
I-ID is transformed into a traditional ID. During the
transformation, the CPD of the nod¢;, is populated

it for themselves. To make the game more interesting,
we allow agents to contribute the fulF'(C’) or a par-

tial (PC) portion of their resources though they could
defect (D) and not make any contribution. The value
of resources in the public pot is shared by the agents
regardless of their actions and is discounted:pfor
each agent, wherec; € (0,1) is the marginal private
return. As defection is a dominating action, we intro-
duce a punishmer® to penalize the defecting agents

such that the node assumes the distribution of each of and to promote contribution. Additionally, a non-zero
the chance nodes depending on the state of the node,cost ¢, of punishing is incurred by the contributing

Mod[Mj,;—1] (line 5). As we mentioned previously,
the states of the nod® od[M;,;—1] denote the differ-
ent models of the other agent, and its distribution is
agent’s belief over the models gfconditioned on the
physical state. The transformed I-ID is a traditional ID
that may be solved using the standard expected utility
maximization method (line 6) [18].

I-ID SoLuTION (levell > 1 I-ID or level 0 ID)

1.1f I > 1then
Foreachm?, ,in Mod[M;,;_] do
Recursively call algorithm with the— 1 I-ID
(or ID) that represents” ;|
4, Map the decision node of the solved I-ID
(or ID), OPT(m}, ), to the chance nodd?
5. Establish CPD of the chance nodg in the I-1D
6. Apply the standard expected utility maximization
method to solve the transformed I-ID

w N

Fig. 2. Algorithm for solving a level > 1 I-ID or level O ID

3.1.2. lllustration

We illustrate I-IDs using an example application to
the public good (PG) game with punishment (Table 1)
explained in detail in [8]. Two agent$,and j, must
either contribute some resource to a public pot or keep

agents. For simplicity, we assume each agent has the
same amountXr, of private resources and a partial
contribution is1 X .

We let agents and j play the PG game repeat-
edly a finite number of times and aim for largest av-
erage rewards. After a round of play, agents observe
the simultaneous actions of their opponents. Except for
the observation of actions, no additional information is
shared between the agents. As discovered in field ex-
periments with humans [2], different types of agents
play PG differently. To act rationally, ascribes can-
didate behavioral models o We assume the models
are graphical taking the form of IDs and BNs.

For illustration, let agent consider four models of
j (m}, m3,m3, andmy) in the model node at time as
shown in Fig. 3. The first two models;; andm?, are
simple IDs where the chance nodeg; ... ;1 repre-
sents the frequencies of the different actions of agent
in the game history (fronh to timet—1). However, the
two IDs have different reward functions in the value
node. The modeh} has a typical low marginal private
return,c;, and represents a reciprocal agent who con-
tributes only when it expects the other agent to con-
tribute. The modehzf has a highc; and represents
an altruistic agent who prefers to contribute during the
play. The third modely.?, is a BN representing thas
behavior relies on its own action in the previous time



step (4,,¢—1) andi’s previous action; ;_1). m? rep-

Pr(m}o}*"), Pr(m?|o}*™"),....Pr(m}lo; " 1),..,

% % %

resents a more sophisticated decision process. Agentpr(mﬁolit—l) ). If of is the observation at time

j considers not only its own anis actions at time

t —1 (chance noded,; ;_; andA;;_1), but also agent
i's actions at time¢ — 2 (4, ;_2). Itindicates thay re-
lies greatly on the history of the interaction to choose
its actions at time. We point out that these four mod-
els reflect typical thinking of humans in the field ex-
periments involving PG.

The weights of the four models form the probabil-
ity distribution over the values of the chance node,
Mod[M;]. As agent is unaware of the true model of
j, it may begin by assigning a uniform distribution to
Mod[M;]. Over time, this distribution is updated to re-
flect any information that may have about's model.

3.2. Bayesian Model Identification in I-IDs

As we mentioned before, hypothesizes a limited
number of candidate models of its oppongni/; =
{mj,...,m¥, ... ,m}}, and intends to ascertain the true
model,m}, of j in the course of interaction. On ob-
servingy’s action, where the observation in rounis
denoted by!, : may update the likelihoods (weights)
of the candidate models in the model node of the I-
ID. Gradually, the model that emerges as most likely
may be hypothesized to be the true modej ofiere,
we explore the traditional settingy; € M; where the
true modelyn}, is in the model spacél/;, and move
on to the challenge where the true model is outside it,
m} ¢ M, in Section 4.

Leto; ! be the history of agerits observations up
to timet — 1. Agenti’'s belief over the models of at

time stept — 1 may be written asPr(M;|o; =) def (

Fig. 3. Example level 1 I-ID for the repeated PG game with
four models ascribed tg. The dashed arrows represent the
mapping between decision or chance nodgsimodels and
chance nodes in the model node.

agent: mzay update its belief on receiving the obser-
vation using a straightforward Bayesian process. We
show the update of the belief over some mode};

Pr(oﬂm?, og:tfl)Pr(mﬂoft*l)

S s enr, Prietfmg. ol ) Pr(m;)

Pr(mjlo;") =

@)

Here, Pr(of|m?,0;*~") is the probability ofj per-

forming the observed action given that its modehi.
This may be obtained from the chance notiein the
I-1D of 1.

Eq. 1 provides a way for updating the weights of
models contained in the model node€pd[1/;], given
the observation history. In the context of the I-ID,
agenti’s belief over the other’'s models updated using
the process outlined in Eq. 1 will converge in the limit.
Formally,

Proposition 1 (Bayesian Learning in I-IDs)If an
agent’s prior belief assigns a non-zero probability to
the true model of the other agent, its posterior beliefs
updated using Bayesian learning will converge with
probability 1.

Proof of Proposition 1 relies on showing that the se-
guence of the agent’s beliefs updated using Bayesian
learning is known to be a Martingale [5]. Proposition 1
then follows from a straightforward application of the
Martingale convergence theored(of Chapter 7 in
Doob [5]). Doshi and Gmytrasiewicz [6] provide more
details about this proof.

The above result does not imply that an agent’s be-
lief always converges to the true model of the other
agent. This is due to the possible presence of models of
the other agent that ambservationally equivalertb
the true model. Agent's models that induce identical
distributions over all possible future observation paths
are said to be observationally equivalent for agent
When a particular observation history obtains, agent
1 is unable to distinguish between the observationally
equivalent models of. In other words, the observa-
tionally equivalent models generate distinct behaviors
for histories which are never observed.

Example:For an example of observationally equiv-
alent models, consider the PG game introduced pre-
viously. Let agent consider two candidate models of
j. Suppose that as a best response to its belief, one of
j's models leads to a strategy in which it would select
FC for an infinite number of steps, but if at any time
i choose®, j would also do so at the next time step



and then continue witD. The other model of adopts

a tit-for-tat strategy, i.ej performs the action which
did in the previous time step. If agehtlecides to se-
lectFC an infinite number of times, then the two mod-
els of j are observationally equivalent. Givén strat-
egy, both the candidate modelsjoéssign a probabil-
ity 1 to the observation history ( FC,FC ), ( FC,FC

), ...}, although the strategies are distinct.

4. Information-theoretic Model Identification

For practical purposes, the space of candidate mod-
els ascribed toj is often bounded. In the absence
of prior knowledge,; may be unaware whethgis
true model,m7, is within the model space. i} ¢
M; and in the absence of observationally equiva-
lent models, Bayesian learning may be inadequate
(Pr(otjm?”,0;*~1) in Eq. 1 may be 0 for alin?). As

Jo 7

bounded expansions of the model space do not guaran-

tee inclusion of the true model, we seek to find a candi-
date model or a combination of models from the space,
whose predictions anelevantin determining actions

of j.

4.1. Relevant Models and Mutual Information

As the true model may lie outside the model space,
our objective is to identify candidate models whose
predictions exhibit a mutual pattern with the observed
actions of the other agent. We interpret the existence of
a mutual pattern as evidence that the candidate model
shares some behavioral aspects with the true model.
In order to do this, we introduce a notionrelevance
between a model in/; and the true modely;.

Let a} be the observed action of the other aggnt
anda; denote any other action from its set of actions.
Define Pr,» (a’J’P|a;‘) as the probability that a candi-
date model ofj, m?, predicts actioru? whenaj is
observed in the same time step.

Definition 1 (Relevant Model) If for a model,m’,
and some observed actiod;, there exists an action,
ajt Prpn(aflal) > Pryn(afla}), for all aj, where
aj € OPT(m}) and the subscriptn” denotes the
generative model, them? is arelevantmodel.

Definition 1 formalizes the intuition that a relevant
model predicts an action that is likely to correlate with
a particular observed action of the other agent. In pre-
dictinga’, modelm? may utilize the past observation
history. We note that the above definition generalizes

to a relevant combination of models in a straightfor-
ward way. Given Def. 1, we need an approach that as-
signs large probabilities to the relevant model(s) in the
node Mod[M,] over time. We proceed to show one
way of computing these probabilities.

We begin by observing that the chance nodes,
Mod[M;], Aj and the mapped chance nodé$, A%, . . .,
form a BN, as shown in Fig.(4). We seek the weights
of models inM od[M;] that would allow the distribu-
tion overA; to resemble that of the observed actions.
Subsequently, we may map the problem to one of clas-
sifying the predicted actions of the individual models
with the observed action gf and using the classifica-
tion function for deriving the model weights. Because
the candidate models are independent of each other,
the BN isnaiveand the classification reduces to learn-
ing the parameters (CPDs) of the naive BN using say,
the maximum likelihood approach with Dirichlet pri-
ors. For multiple agents, the models may exhibit de-
pendencies in which case we learn a general BN. We
show the equivalent naive BN in Fig(#).

(©)

Fig. 4. (a) The BN in the I-ID of agent; (b) The equivalent
naive BN that we use for classifying the outcomes of the
candidate models to the observation histgry; Example of
the training set used for learning the naive BN for PG. The
actions in columrd; are observations af while remaining
columns are obtained from models.

As relevant models hint at possible dependencies
with the true model in terms of predicted and observed
actions, we utilize thenutual information(MI) [4] be-
tween the chance nodefs and sayA}, as a measure
of the likelihood of the modeln}, in Mod[M;]. MI
is a well-known way of quantifying the mutual depen-
dency between two random variables.



Definition 2 (Mutual Information) The mutual infor-
mation (MI) of the true modely:; and a candidate
model,m7, is computed as:

Pr(AT,A;
Pr( An)Pr A )]
Pr(AT|A;)
Dlogl =5y

mj) def Pr(A7, Aj)log|
= Pr(A}|A;)Pr(A

MI(m?}

VRl

)

Here, A7 is the chance node mapped from the model,
m’, and 4; is the chance node for the observed ac-
tions generated by the true model;.

The termsPr(A%[A;), Pr(A}) and Pr(A;) are

calculated from the CPDs of the naive BN. Note that
the distribution, Pr(A}|A;), implies possible rela-
tions between observed and predicted actions in the
history. Here, the observed history ¢ actions to-
gether with the predictions of the models over time
may serve as the training set for learning the parame-
ters of the naive BN. We show an example training set
for PG in Fig. 4¢). Values of the cqumnsA}, A?, -
A7 are obtained by solving the corresponding mod-
els and sampling the resulting distributions if needed.
We utilize the normalized MI at each time step as the
model weights in the chance node od[M;].

Example: We show an example training set for PG
in Fig. 4(c). Notice that:

1__ —
Pr(Al=PC,A;=PC)

= PC|A; = PC) =

ml Pr(A;=PC)
_ % — 1
=35 =

Al Pr(A}=PC,A;=FC)
Pri(Aj = PCIA; = FC) = —Fm=pey—
=96 _
=3s =

Al Pr(A}=PC,A;=D)
P?“ml( ]:PC|A]':D): Pr(Aj:D)
= U6 _
=16 =

Therefore, we gePr,, 1(A1 = PC|A; = PC) >
Prml( = PC|4; = FC or D). Hence, from Def-
|n|t|on 1 we conclude that the modei; that maps to
A} is a relevant model so far. Additionally,
MI(m},m?) = Pr(Al|A;)Pr(A;)l gPTT““(A‘#))
= ZaJ ZaleOPT(ml)[Pr 1( jlas) Pr(az)
Pr, i (a} \aJ)

ZOQW]

2‘
=1 log[, 7|+ § - logls"z] + 1+ log[+7]
6l6 6 6 6 6
+3 log[1%z] = 0.551 (after mormalization)

4.2. Theoretical Results

Obviously, modein’' is irrelevant if Pro,» (a’f|aj)
= Prpr (a}|a}) for eacha} € OPT(m7) and alla;.
Then, we trivially obtain the next proposition.
Proposition 2. If m? is irrelevant, M I(m', m}) = 0.

Proof. We may express/I(m
andPry,n» (a7]a}) as below:

m3) interms ofPro,» (a}'|aj)

MIGmrm) = % {Prm;wma;)Pr(a;)
aleopT(mﬂ)
Pr ;w( ilai)
lOg[Prmn(a"\a*)Pr(a*H—Prmn(a"\a*)Pr(a*)]
+Prm;( *aj)Pr(a})

Pr n(a \a*)

m

log[Pr n. (a"\a*)Pr(a*H—Pr n (a1 \a*)Pr(a*)]

my

}

®)

SincePrmn (af|aj) = Prmn (af|aj), we havePr,» (af|a})
Pr(aj) + Prmn (afla;) Pr(aj)=Prm» (aj|aj)=
Prm;z(aﬂa;). Consequently, théog(-) term in Eq. 3 be-
comes zero, which leads fa I (m},m}) =0. 1

As MI is non-negative, Proposition 2 implies that
relevant models are assigned a higher Ml than irrele-
vant ones. To enable further analysis, we compare the
relevance among candidate models.

Definition 3 (Relevance Ordering)Let a; be some
observed action of the other agentlf for two rele-
vant models, such thatr,,,» (a7|a}) > Pr,» (af]a})

and Pry,» (a}]aj) < Prpz(at|aj), for all a; where
a? € OPT(m}), af € OPT( "), anda; denotes
any other action of the true model thert i |s amore

relevantmodel tharmg.’ )

Given Def. 3, we show that models which anere
relevantare assigned a higher MI. Proposition 3 for-
malizes this observation. The proof below adapts [13].

Proposition 3. If m’ is a more relevant model than
mf as per Definition 3 andr} is the true model, then
MI (mf,m5) > MI (mf,m}).



Proof. We further expand Eq. 3 and expres&l (m}, m})
as below:

n €\
MI(m},mj) =
a;LEOPT(rn"f)

log|

{Prm? (a}]a})Pr(a})

Pr allaj ]
mn( “lat)
Pr(a*)

n(a”\a*) J

+Prmn( J|a )Pr( 3)

P'r(a )+

(4)

log[ Prpn (@ lar) ! ]
Pr(a;f)-kPr(a;f)

taArEs
Prmn(a )

Notice that Pr,» ( (a}la;) > Pron (a?]a%), we get
Prn(ajla}) .
P’l”( ) + Pr w(a”\a*)Pr(a')
Pron@ila) Pron (a?la?)
FrsTanan) n(a”\a*)Pr(a]) =1 S|m|IarlymPr(a])+
J J

7) > 1. Hence, in Eq. 4, the first terrﬁ’,rm; (af|a})

Pr(a
Pr(aj) log| ] > 0 (since the

< 1 since Pr(aj) +

1
Pro,n@plal)

Pr(a;)+ 5 n(a,”a*)Pma )
base is 2 inlog deflned in MI), while the second term,
Prm;w (a7la3)
Pr(a;) 109[ Pr._n(alla’)
mj J J
J
Then, for a fixedPr(a}), MI(m},m}) is a mono-
tonically increasing function oPrm;L(aﬂa]*-) for a fixed
Prmn(afla}), and a monotonically decreasing function of
Prpn(afla}) for a fixed Pry,» (a7]a;) since the second
term is less than zero in Eqg. 4. Therefore, substituting
Prmn(afla}) and Prmyn (afla}) with Prmgf(aﬂa;) (<
Prm;‘ (a‘g'aj )) and Prm;’ (a‘g'a’j) (> Prm;‘ (a;'L'a‘j)) re-
spectively, results id/ I (m}, m}) > MI(m%,mj;). &

L ]<o.
Pr(a;’.‘)ﬁ»P'r(Fz;)

For the sake of completeness, we show that if the
true model,m}, is contained in the model space, our
approach analogous to Bayesian learning will con-
verge.

Proposition 4 (Convergence) Given that the true
modelm; € M; and is assigned a non-zero probabil-
ity, the normalized distribution of mutual information
of the models converges with probability 1.

Proof. The proof is intuitive and relies on the fact that

Analogous to Bayesian learning, the distribution of
MI may not converge to the true model in the presence
of MI-equivalentmodels in}/;. In particular, the set of
MI-equivalent models is larger and includes observa-
tionally equivalent models. However, consider the ex-
ample wherej’s true strategy is to always sele€ec,
and let M; include the true model and a candidate
model that generates the strategy of always selecting
D. Though observationally distinct, the two candidate
models are assigned equal MI due to the perceived de-
pendency between the action of selectinlgy the can-
didate and selectingC by the true one. However, in
nodeA;, the actiorD is classified to the observeldC.

Model Weight Update
Input: I-1D of agents, observatiomg, training setl'r

1. Agenti receives an observatimj

2. Solve the modelsn;’ p=1,...
chance nodeﬂ? p=1,---,n)

3. Add (A]l,~ -, A, AT, of) as a sample into
the training sefr

4. Learn the parameters of thaive BNincluding the chance
nodesA]l,. A7, andA]-

5. For eachAp (p= .,n)do

6. ComputeMI(m m7) using Eq. 2

7. ObtainPr(A; \A") from the learnedhaive BN

8. Populate CPD of the chance nadg in the I-ID

USingPT’"L?) (A7 |A€)
9. NormalizeM I(m%, m?)
10. Populate CPD of the chance naterd[M ;] using M I

,n) to get actions for the

Fig. 5. Algorithm revises the model weights in the model
node,Mod[M;], on observing’s action using Ml as a mea-
sure of likelihood, and populates CPDs of the chance node,
Aj, using the learned naive BN.

4.3. Algorithm

We briefly outline the algorithm for model identifi-
cation in Fig. 5. In each rounglagent receives an ob-
servation of its opponerits action (line 1). This obser-
vation together with solutions from candidate models

the estimated parameters of the naive Bayes convergeof j (line 2), constitute one sample in the training set
to the true parameters as the observation history grows T'r (line 3; see Fig. &)). The training set is used for

(see chapter 3 of Rennie [16] for the proof when the
maximum a posteriorapproach is used for parame-

learning the parameters of the naive BN (line 4) and
subsequently for computing the model weights in the

ter estimation). Proposition 4 then follows because the I-ID. Given the learned parameters, we compute the

terms Pr(A’|A;), Pr(A}) and Pr(A;) used in cal-
culating the MI are obtained from the parameter esti-
mates of the naive BN. I

MI of each candidate modeh? andm; (line 6). The
posterior probabilities (from line 7) are also used in the
CPD of the chance nodé; in the I-ID (line 8). No-



tice that the CPDPT‘m;) (A;]AY), describes the rela-  that KL assigns non-zero weights to other models as
tion between the predicted actions by candidate mod- the distribution generated by those candidates is some-
els and the observed actions. In other words, it reflects what close to that of the true model.

the classification of the predicted actions. The normal-  For evaluation of the case whene; ¢ M;, i con-

ized Ml is assigned as the distribution of the chance siders three candidate modelsjofmﬁ, mj andm;&
nodeMod[M;] in the I-ID (line 10). This distribution while j uses the reciprocal modej}_ We observe that
represents the updated weight over the candidate mod- M significantly outperforms other updating methods
els ofj. Given the updated model weights and the pop- obtaining the largest average rewards over the long run
ulated CPDs of the chance node, we solve the I-ID (Fig. 6(b)). This is because MI finds the deliberative
of agenti to obtain its action. model,m?, to be most relevant to the true modei?.
Model m} expects: to perform its most frequently
observed action and matches it, an aspect that is best
shared byn;*, which relies the most on other’s actions.
We note that MI does not monotonically increase but
assigns the largest weight to the most relevant model
at any point in time. Notice that both} andm con-

5. Performance Evaluation

We evaluate the effectiveness of the algorithm out-
lined in Fig. 5 in the context of three well-known re-

peated games: the repeated PG game, repeated onegjyer actions of the other agent, and identical actions of

shot negotiations as in [17] though simplified, and re- s agents as promoted by a reciprocal model are more
peated Rock-Paper-Scissor games. As we mentioned, 5 ,apje. Both the A-BL and KL methods settle on the
previously, if the true model falls outside the model altruistic modelmf, as the most likely.

spacef; ¢ M;), Bayesian learning (BL) may be in-
adequate. A simple adaptation of BL (A-BL) would be

to restart the BL process when the likelihoods become ,_]O'V\Z, | _Al Fi Ci
zero by assigning candidate models prior weights us- Md| 1 0 1
ing the frequency with which the observed action High| 3 1 -1
has been predicted by the candidate models so far. (a)

Additionally, we utilize another information-theoretic
measure, the KL-Divergence (KL), which is a well-
known pseudo-distance measure between two proba-
bility distributions, to assign the likelihood of a can-
didate model. Lower is the KL between distributions

over A" and A;, larger is the likelihood of the corre- o)
] J
sponding modely} . O,
We let agents ‘and j play 1000 rounds of each ONOBICSIRS : 6
game and repoits average rewards. To facilitate anal- @ @D )
(

ysis, we also show the changing model weights across ) b)

rounds that are assigned to the relevant and true models _ o

for both casesm* € M; andm* & M. Fig. 7.(a) Single shot play of a negotiation between the seller
J J 7 J i and buyerj. The numbers represent the payoffs of the seller

i. (b) I-1D for the seller in the negotiation with four models

ascribed to the buyej.

5.1. Repeated Public Good Game

In the PG game, we utilize the I-ID in Fig. 3 to

model the interaction. Ageritplays with the opponent 5.2 Repeated One-shot Negotiations
j multiple rounds of PG and aims to gain larger re-

wards in the long run by discoverings true behav- A seller agenti wants to sell an item to a buyer
ioral model. For the settingn; € M;, we letthe  agentj. The buyer agent bargains with the seller and
model space);, contain three modelsy;, m?, and offers a price that ranges frothow, Mid, to High.
m;*, and let ageng play using the true modeln;*. The seller agent decides whetherdaept the offer

Fig. 6(a) demonstrates the favorable performances of (A), to reject it immediately (R), or tocounter the
MI, BL and A-BL, which quickly converge to the true  offer (C). If i counters the offer, it expects a new price
model and gain almost the same average rewards. Noteoffer from agentj. Once the negotiation is completed
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Fig. 6. Performance profiles for both, the traditional setting, € M;, and the realistic casen; ¢ Mj, in the repeated PG
game. Notice that, for the casewf; ¢ M;, the model weight assigned using BL drops to zero.

successfully or fails, the agents restart a new one on
a different item; otherwise, they continue to bargain.
Figure Ta) shows the payoffs of the seller agent when
interacting with the buyer. The seller aims to profit by
getting large rewards (payoff) in the bargaining pro-

tending to offer a low price. Modehf. is arisk neutral
buyer that balances its low and high offers in the nego-
tiation. The final modelm;*, is a buyer that is risk neu-
tral but in an urgent situation, and is eager to acquire
the item. Consequently, it is prone to offering a high

cess. As in most cases of negotiations, here the seller price, though its actions also depend on the seller. Note

and the buyer are unwilling to share their preferences
with the other. For example, from the perspective of
the seller, some types of buyer agents have different
bargaining strategies based on their risk preferences.
The ability to identify the buyer’s true model enables
the seller agent to choose rational actions in the nego-
tiation.

The idea of using probabilistic graphical models
in multiagent negotiation was previously explored
in [15]. In a similar vein, we model agentusing the
I-ID shown in Fig. 1b). Analogous to [17], we con-
sider four types of the buyer agentEach of them is
represented using a BN. They differ in the probability
distributions for the chance nodBsskthat represents
the buyer’s risk attitude andrg, which represents the
urgency of the situation to the agent. Let mo@éjl
represent a buyer of i@sk aversetype. A risk averse

agent has an aversion to losing the deal and hence al-

ways proposes a high offer. The second mod@l, is
arisk seekinguyer that adopts a risky strategy by in-

that the chance noddeg ;_; represents’s previous
action in the negotiation.

Let agent; consider three candidate models for
mj, m3, andm?, and ageny uses modein] for the
setting,m} € M;. Fig. 8a) reveals that all the differ-
ent updating methods correctly identify the true model
after some steps and gather similar rewards.jAs
risk averse, it often offers a high price that the seller
chooses to accept incurring a payoff of 3.

In the case where:; ¢ M;, agentj plays the game
using the modelm;*, and i assumes the remaining
three models as candidates. Notice that MI eventually
assigns the largest weight-(0.63) to the risk averse
agent,m}, that always offers a high price in the ne-
gotiation. This behavior is consistent with the model,
m;*, that represents an urgent buyer who is also prone
to offering a high price. Consequently, Ml obtains bet-
ter average rewards than other methods. The remaining
two candidate models are Ml-equivalent. In compari-
son, both KL and A-BL methods eventually identify
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Fig. 8.Performance profiles and the changing model weights

the risk neutral agent?, which leads to lower average
rewards.

5.3. Rock-Paper-Scissor Games

Two agents; andj, play Rock-Paper-Scissor (RPS;
also called RoShamBo) game repeatedly a finite num-
ber of times and aim for winning the most number of
times thereby gathering larger average rewards (pay-
off). After each round, only the simultaneous actions
of agents are exhibited to each other. The payoffs in
the game are as shown in Table 2.

Table 2
Payoff for agents; andj, in a RPS game.
3,7 | Rock Paper Scissor
Rock | (0,00 (-1,1)  (1,-1)
Paper| (1,-1) (0,0) (-1,2)
Scissor | (-1,1) (1,-1) (0,0)

We model four types of agentfrom the perspec-
tive of agent; in the experiment. The I-ID in Fig. 9
shows that agent considers four models of (m]l,
m?, m?, andmj) in the model node at time. The
first model,m}, is a simple ID where the chance node
A (1,... +—1) Models the frequencies of ageid dif-
ferent actions in the history (from to time ¢ — 1).

1 10
Rounds
J
1

08
0.6
0.4

0.2 -

Rounds

fonmtbecises while repeatedly playing the negotiation game.

Fig. 9. Example I-ID for the Rock-Paper-Scissor game withrfo
models ascribed tg.

The second IDmf, has a different structure: Agent
j's belief overi’s actions depends ofis behaviors in
the previous time step— 1. Thus ageny thinks that
agenti may play according to whatplays in the pre-
vious time step. The remaining two models are BNs
that reflectj’s more deliberative behaviors. The third
model,mﬁ, representg’s behavior of counting both its
own actions in the previous time step,(;—;) and:’s
previous actions4; ;—1). The final modelmg* shows

j has a more sophisticated decision process. Not only
agents andj’s behaviors at timeé — 1 (chance nodes



(a) Case Tm} = mj, M;={m3, m}, mj}
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(b) Case 2m} = m3, M;
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Fig. 10.Performance profiles and revised model weights for the twe<#or the RPS game.

A;:—1 and A;,_;) but also ageni’s actions at time zero formy). Both A-BL and KL findm? as the most
t — 2 (4, :—2) are considered when agentlecides its likely.
behaviors at time. Note that the strategies reflected in
these four models are often used in competitive RPS
tournaments.

We assume that for case 1, aggnplays the true 6. Discussion
model,m;*, and: uses a model space consisting of the
three models{m?, m?, mj}. In Fig. 1Qa), we show ) ) ) _
the average rewards obtainedbgs well as the vary- I-IDs use Bayesian learning to update beliefs with
ing model weights (assigned m;;)_ As we may ex- the implicit assurnptlo_n that true models of other
pect, both the BL and A-BL methods quickly identify ~agents are contained in the model space. As model
the true model and therefore gather large average re- spaces are often bounded in practice, true models of
wards. The MI method also identifies;* among the others may not be present in the space. We show that
candidate models after a few more steps, and gradually distribution of Ml of the candidate models learned by
gains identical rewards as BL from play. Notice that classifying their predictions exhibits a performance
KL does not perform as well because candidate models comparable to Bayesian learning when the true model
other thanm; are assigned non-zero model weights. is yithin the set of candidate models. More impor-

However, it does assign the largest Ijkelihoodﬂ@. tantly, the MI approach improves on other heuristic ap-
for ‘?""S‘? 2 (Fig. 1@))' we let ager.w.use the model proaches for the plausible case that true model is out-
m; while i hypothesizes the remaining three models side the model space. Thus. the approach shows po-

for j. We first observe that MI gains the largest aver- : pace. ' pp . P
tential as a general purpose candidate technique for

age reward. Ml eventually identifies the model;*, as ) o i
the most relevant. This is intuitive because, analogous 'dentifying models when we are uncertain whether the

to the true modeh?3. the modeln? also deliberates  Model space is exhaustive. However, an important lim-

77 J . . . . .
actions based on both opponents’ and its own previous itation is that the space of Mi-equivalent models is
behaviors. BL filters out all candidate models quickly large. While it may not affect performance, it merits
due to contradicting observations (notice the drop to further investigation.
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