Light-AI for Cognitive Power Electronics

Bin Yang

Center for Data-intensive Systems
Motivation

• State-of-the-art performance is often achieved by complex learning models.
 - Deep learning, such as CNNs and RNNs.
 - Ensemble learning, such as random forests.
• Limitations of the complex learning models.
 - Large space overhead to store the models and require long time
 to execute the models.
 - Neural networks with many layers and huge amount of weights.
 - An ensemble model consists of huge amount of base models.
• Prohibit their use in applications where storage space and computational power are limited, such as mobile devices and embedded devices.
 - Green energy: power electronics.
 - Industry 4.0: smart watches.
Power Electronics

- Solid-state electronics manage the control and conversion of electric power.

- Predictive maintenance (outlier detection)
 - Predict when power electronics device may break down.
 - Based on the operation (time series) data collected from various sensors deployed on power electronics.

- Limited storage and computational capability.
 - Unable to use deep learning and ensemble learning.
The Project

• Aim: develop **lightweight** AI *automatically*
 - Computational lightweight: compact learning models with competitive accuracy.
 - Model compression, less storage and computational power.
 - Data lightweight: effective learning models which do not rely on large amounts of human provided labels.
 - Unsupervised learning, self-supervised learning.
 - Automatically adapt to various power electronics with different hardware configurations.

• Collaborations
 - With energy department
 - With USC